1. 三角函式基本性質
本文主要用於複習一下傅立葉級數、傅立葉變換的基礎
基本定理
- 三角函式的正交性: 頻率不同的三角函式乘積在一個週期內的積分是0,即:
\[\int_{-\pi}^{\pi}sin(mx\pm\frac{\pi}{2})cos(nx\pm\frac{\pi}{2})dx = 0 \quad m \neq n \quad\quad (0) \\
\int_{0}^T{sin(x\pm\frac{\pi}{2})}dt = 0
\]
對於任意\(m n \quad m \geq 1 \quad n \geq 1\),
\[\int_{-\pi}^{\pi}sin(mx)cos(nx)dx = 0 \quad\quad(1)
\]
- 和差化積、積化和差 公式
根據尤拉公式:
\[e^{i\theta} = cos(\theta) + isin(\theta) \\
e^{i(\theta+\alpha)} = cos(\theta + \alpha) + isin(\theta + \alpha) = e^{i\alpha}e^{i\alpha} = \\
[cos(\theta) + isin(\theta)][cos(\alpha) + isin(\alpha)] = \\
cos(\theta)cos(\alpha) - sin(\theta)sin(\alpha) +i[cos(\theta)sin(\alpha) + sin(\theta)cos(\alpha)] \rightarrow\\
cos(\theta + \alpha) = cos(\theta)cos(\alpha) - sin(\theta)sin(\alpha) \\
sin(\theta + \alpha) = cos(\theta)sin(\alpha) + sin(\theta)cos(\alpha) \\
cos(2x) = cos(x)^2 - sin(x)^2
\]
由和差化積可以得到 積化和差公式:
\[sin(\theta)sin(\alpha) = \frac{sin(\theta + \alpha) - cos(\theta + \alpha)}{2}\\
....
\]
2. 實數域傅立葉級數
滿足狄利克雷條件的週期函式,可以展開成傅立葉級數,傅立葉級數表示為:
\[f(t) = c_0 + \sum_{n=1}^{\infty}{c_ncos(n\omega t + \phi)} = \\
c_0 + \sum_{n=1}^{\infty}{c_ncos(\phi)cos(n\omega t) - c_nsin(\phi)sin(n\omega t)}
\]
\(c_0\) 是其中的直流分量, 令\(a_n=c_ncos(\phi), b_n=-c_nsin(\phi)\), 上式寫作:
\[f(t) = c_0 + \sum_{n=1}^{\infty}{[a_ncos(n\omega t) + b_nsin(n\omega t)]}
\]
對上述級數的係數求解方式如下
令\(K(t) = f(t)sin(k\omega t)\), 則:
\[\int_{0}^{T}K(t)dt = \\
\int_{0}^{T}c_0sin(k\omega t)dt + \int_{0}^{T}{sin(k\omega t) \sum_{n=1}^{\infty}[a_ncos(\omega t) + b_nsin(\omega t)]}dt
\]
根據第一節的定理,可以得知:
\(\int_{0}^{T}c_0sin(k\omega t)dt = 0\)
\[\int_{0}^{T}{sin(k\omega t) \sum_{n=1}^{\infty}[a_ncos(n\omega t) + b_nsin(n\omega t)]}dt = \\
\int_{0}^{T}{\sum_0^{\infty}[sin(k\omega t)a_ncos(n\omega t)]}dt + \int_{0}^{T}{\sum_0^{\infty}[sin(k\omega t)b_nsin(n\omega t)]}dt = \\
\sum_{n=1}^{\infty}{\int_0^{T}[sin(k\omega t)a_ncos(n\omega t)]dt} + \sum_{n=1}^{\infty}{\int_0^{T}[sin(k\omega t)b_nsin(n\omega t)]dt} = \\ a(t) + b(t)
\]
根據(1),\(a(t) = 0\), 根據(0), 當\(k=n,b(t) \neq 0\),此時繼續推導:
\[\sum_{n=1}^{\infty}{\int_0^{T}[sin(k\omega t)b_nsin(n\omega t)]dt} = b_n\int {sin(\omega t)}^2 dt
\]
根據:
\[sin(x)^2 + cos(x)^2 = 1\\
cos(2x) = cos(x)^2 - sin(x)^2 = (1-sin(x)^2) - sin(x)^2 \\
sin^2(x) = \frac{1-cos(2x)}{2} \\
b_n\int {sin(\omega t)}^2 dt = b_n \int{ \frac{1-cos(2t)}{2}}dt=\frac{b_nT}{2} \\
b_n = \frac{2}{T}\int{f(t)sin(n\omega t)}dt
\]
類似的,求出\(a_n\)
\[a_n = \frac{2}{T}\int{f(t)cos(n\omega t)}dt
\]
對於傅立葉級數的第n項,其能量和相位分別是:
\[c_n^2 = a_n^2 + b_n^2 \\
\Phi = arctan(-\frac{b_n}{a_n})
\]