HDU 2973 YAPTCHA(威爾遜定理)
YAPTCHA
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 930 Accepted Submission(s): 491
Problem Description
The math department has been having problems lately. Due to immense amount of unsolicited automated programs which were crawling across their pages, they decided to put Yet-Another-Public-Turing-Test-to-Tell-Computers-and-Humans-Apart on their webpages. In
short, to get access to their scientific papers, one have to prove yourself eligible and worthy, i.e. solve a mathematic riddle.
However, the test turned out difficult for some math PhD students and even for some professors. Therefore, the math department wants to write a helper program which solves this task (it is not irrational, as they are going to make money on selling the program).
The task that is presented to anyone visiting the start page of the math department is as follows: given a natural n, compute
where [x] denotes the largest integer not greater than x.
However, the test turned out difficult for some math PhD students and even for some professors. Therefore, the math department wants to write a helper program which solves this task (it is not irrational, as they are going to make money on selling the program).
The task that is presented to anyone visiting the start page of the math department is as follows: given a natural n, compute
where [x] denotes the largest integer not greater than x.
Input
The first line contains the number of queries t (t <= 10^6). Each query consist of one natural number n (1 <= n <= 10^6).
Output
For each n given in the input output the value of Sn.
Sample Input
13
1
2
3
4
5
6
7
8
9
10
100
1000
10000
Sample Output
0
1
1
2
2
2
2
3
3
4
28
207
1609
Source
題意:
給了你一個公式,讓你求這個公式。
POINT:
利用威爾遜定理:
若3k+7為質數,就是1,其他情況則是0。
實求x屬於(1,n)時3*x+7中有幾個質數。
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <stack>
#include <algorithm>
#include <math.h>
using namespace std;
#define ll long long
//int a[1000000];
int num=0;
int f[3000000+10];
int ans[1000000];
void init()
{
memset(f,1,sizeof f);
// a[++num]=2;
for(int i=4;i<=3000007;i+=2) f[i]=0;
for(int i=3;i<=3000007;i++)
{
if(f[i])
{
// a[++num]=i;
for(int j=i*3;j<=3000007;j=j+i*2)
{
f[j]=0;
}
}
}
ans[0]=0;
for(int i=1;i<=1e6;i++)
{
if(f[i*3+7])
{
ans[i]=ans[i-1]+1;
}
else
ans[i]=ans[i-1];
}
// printf("%d",num);
}
int main()
{
init();
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
printf("%d\n",ans[n]);
}
}
相關文章
- 威爾遜定理
- CF1957E 做題小計 : 威爾遜定理
- HDU 5794 A Simple Chess (lucas定理+費馬小定理)
- 羅爾(Rolle)中值定理
- exadata與安迪比爾定理
- 2024_5_29 狄爾沃斯定理(偏序集)
- HDU 4549 M斐波那契數列(矩陣快速冪+費馬小定理)矩陣
- 盧卡斯定理(Lucas定理)
- Ofcom:2023年威爾士媒體報告
- 矩陣樹定理 BEST 定理矩陣
- hdu 2111 Saving HDU (DP)
- 矩陣樹定理與BEST定理矩陣
- 蒂姆.威爾茨:處境尷尬的 DooM 元老OOM
- 主定理
- Coppersmith定理MIT
- 奈奎斯特定理與夏農定理
- 用Rolle中值定理證明Lagrange中值定理
- “沒有免費的午餐”定理(NFL定理)
- 威爾士(Wealth)質押挖礦系統開發IDO
- 威爾森:2017年新能源車增長動力分析
- 笛卡爾實驗室全面遷移至亞馬遜雲科技亞馬遜
- Lucas定理 & Catalan Number & 中國剩餘定理(CRT)
- BEST 定理與矩陣樹定理的證明矩陣
- Shape of HDU
- HDU 3349
- 介值定理
- 費馬定理
- 大數定理
- 尤拉定理
- 盧卡斯定理
- 威爾人臉識別解決方案成功落地中石化
- HDU 2052(C語言+註釋)+HDU 2090C語言
- 智威湯遜:2020年隱私時代的客戶洞察報告
- 亞馬遜雲科技如何追蹤並阻止雲端的安全威脅亞馬遜
- 泛函分析筆記(十四)Baire定理,Banach-Steinhaus定理泛函分析筆記AI
- 洛谷P2973 [USACO10HOL]趕小豬(高斯消元 期望)
- 威爾森:2023年3月新能源汽車行業月報行業
- 威爾森:2023年7月新能源汽車行業月報行業