Raising Modulo (快速冪取模)
People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, others like using Windows, and some like difficult mathematical games. Latest marketing research shows, that this market segment was so far underestimated and that there is lack of such games. This kind of game was thus included into the KOKODáKH. The rules follow:
Each player chooses two numbers Ai and Bi and writes them on a slip of paper. Others cannot see the numbers. In a given moment all players show their numbers to the others. The goal is to determine the sum of all expressions Ai Bi from all players including oneself and determine the remainder after division by a given number M. The winner is the one who first determines the correct result. According to the players' experience it is possible to increase the difficulty by choosing higher numbers.
You should write a program that calculates the result and is able to find out who won the game.
Input
The input consists of Z assignments. The number of them is given by the single positive integer Z appearing on the first line of input. Then the assignements follow. Each assignement begins with line containing an integer M (1 <= M <= 45000). The sum will be divided by this number. Next line contains number of players H (1 <= H <= 45000). Next exactly H lines follow. On each line, there are exactly two numbers Ai and Bi separated by space. Both numbers cannot be equal zero at the same time.
Output
For each assingnement there is the only one line of output. On this line, there is a number, the result of expression
(A1B1+A2B2+ ... +AHBH)mod M.
Sample Input
3 16 4 2 3 3 4 4 5 5 6 36123 1 2374859 3029382 17 1 3 18132
import java.util.Scanner;
public class Main {
public static long q_pow(long a,long b,long c)
{
long ans=1;
while(b>0)
{
if((b&1)==1)
{
ans=(ans*a)%c;
}
b>>=1;
a=a*a%c;
}
return ans;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N;
N=sc.nextInt();
while((N--)>0)
{
long mod;
mod=sc.nextInt();
long num;
num=sc.nextInt();
long A,B;
long sum=0;
for(long i=0;i<num;i++)
{
A=sc.nextInt();
B=sc.nextInt();
sum=sum+Main.q_pow(A, B, mod);
}
sum%=mod;
System.out.println(sum);
}
}
}
相關文章
- 數論模運算以及快速冪小解
- C 語言實現整數快速模除(modulo)和地板除(floordiv)
- 快速冪
- 快速乘/快速冪
- 快速冪模板
- 矩陣快速冪矩陣
- 越獄(快速冪)
- 快速冪的運用
- 快速冪的寫法
- 模冪運算-要求演算法返回冪運算a^b的計算結果與1337取模後的結果演算法
- 矩陣快速冪總結矩陣
- 菜鳥初嘗快速冪
- 漲薪【貪心】【快速冪】
- 矩陣快速冪(快忘了)矩陣
- Quick Pow: 如何快速求冪UI
- 快速冪的初步認識(Java)Java
- 矩陣快速冪加速最短路矩陣
- 矩陣快速冪最佳化矩陣
- 【矩陣乘法】【快速冪】遞推矩陣
- 費馬小定理 + 費馬大定理 + 勾股數的求解 + 快速冪 + 矩陣快速冪 【模板】矩陣
- BZOJ4589: Hard Nim(FWT 快速冪)
- HDU 1005 Number Sequence(矩陣快速冪)矩陣
- HDU 2197 本原串 (規律+快速冪)
- 快速獲取昨天的日期(time模組使用)
- (13)冪模m與逐次平方法
- HDU 2256Problem of Precision(矩陣快速冪)矩陣
- HDU 2157 How many ways?? (矩陣快速冪)矩陣
- BZOJ 3329 Xorequ:數位dp + 矩陣快速冪矩陣
- HDU 2276 - Kiki & Little Kiki 2 (矩陣快速冪)矩陣
- 從斐波那契到矩陣快速冪矩陣
- P2220 [HAOI2012]容易題(快速冪)
- 【資料結構與演算法】快速冪資料結構演算法
- 程式執行異常: Modulo by zero
- HDU - 1061 Rightmost Digit(二分快速冪板題)Git
- 二進位制運算加減乘除+快速冪
- 第?課——基於矩陣快速冪的遞推解法矩陣
- P5035金坷垃題解(快速冪的講解)
- 演算法學習:矩陣快速冪/矩陣加速演算法矩陣