HDU 2157 How many ways?? (矩陣快速冪)
How many ways??
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3429 Accepted Submission(s): 1316
Problem Description
春天到了, HDU校園裡開滿了花, 奼紫嫣紅, 非常美麗. 蔥頭是個愛花的人, 看著校花校草競相開放, 漫步校園, 心情也變得舒暢. 為了多看看這迷人的校園, 蔥頭決定, 每次上課都走不同的路線去教室, 但是由於時間問題, 每次只能經過k個地方, 比方說, 這次蔥頭決定經過2個地方, 那他可以先去問鼎廣場看看噴泉, 再去教室, 也可以先到體育場跑幾圈, 再到教室. 他非常想知道, 從A 點恰好經過k個點到達B點的方案數, 當然這個數有可能非常大, 所以你只要輸出它模上1000的餘數就可以了. 你能幫幫他麼??
你可決定了蔥頭一天能看多少校花哦
Input
輸入資料有多組, 每組的第一行是2個整數 n, m(0 < n <= 20, m <= 100) 表示校園內共有n個點, 為了方便起見, 點從0到n-1編號,接著有m行, 每行有兩個整數 s, t (0<=s,t<n) 表示從s點能到t點, 注意圖是有向的.接著的一行是兩個整數T,表示有T組詢問(1<=T<=100),
接下來的T行, 每行有三個整數 A, B, k, 表示問你從A 點到 B點恰好經過k個點的方案數 (k < 20), 可以走重複邊。如果不存在這樣的走法, 則輸出0
當n, m都為0的時候輸入結束
接下來的T行, 每行有三個整數 A, B, k, 表示問你從A 點到 B點恰好經過k個點的方案數 (k < 20), 可以走重複邊。如果不存在這樣的走法, 則輸出0
當n, m都為0的時候輸入結束
Output
計算每次詢問的方案數, 由於走法很多, 輸出其對1000取模的結果
Sample Input
4 4
0 1
0 2
1 3
2 3
2
0 3 2
0 3 3
3 6
0 1
1 0
0 2
2 0
1 2
2 1
2
1 2 1
0 1 3
0 0
Sample Output
2
0
1
3
Author
小黑
Source
圖的鄰接矩陣進行平方運算的含義:
A^n中,A[i][j]表示的是從i出發走到點j走n步,有多少種走法。
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <stack>
#include <algorithm>
#include <math.h>
using namespace std;
#define ll long long
const int N = 22;
const int p = 1000;
int n,m;
struct mx
{
int c[N][N];
};
mx chen(mx a,mx b)
{
mx ans;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
ans.c[i][j]=0;
for(int k=1;k<=n;k++)
{
(ans.c[i][j]+=a.c[i][k]*b.c[k][j])%=p;
}
}
}
return ans;
}
mx mxqkm(mx base,int mi)
{
mx ans;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
ans.c[i][j]=i==j;
}
}
while(mi)
{
if(mi&1)
{
ans=chen(ans,base);
}
mi>>=1;
base=chen(base,base);
}
return ans;
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
if(!(n+m)) break;
mx a;
memset(a.c,0,sizeof a.c);
while(m--)
{
int u,v;
scanf("%d %d",&u,&v);
a.c[u+1][v+1]=1;
}
int T;
scanf("%d",&T);
while(T--)
{
int i,j;
int k;
scanf("%d %d %d",&i,&j,&k);
mx ans=mxqkm(a,k);
printf("%d\n",ans.c[i+1][j+1]);
}
}
}
相關文章
- HDU 1005 Number Sequence(矩陣快速冪)矩陣
- HDU 2256Problem of Precision(矩陣快速冪)矩陣
- HDU 2276 - Kiki & Little Kiki 2 (矩陣快速冪)矩陣
- 矩陣快速冪矩陣
- HDU1213-How Many Tables
- 矩陣快速冪總結矩陣
- 矩陣快速冪(快忘了)矩陣
- 矩陣快速冪加速最短路矩陣
- 矩陣快速冪最佳化矩陣
- 【矩陣乘法】【快速冪】遞推矩陣
- 演算法學習:矩陣快速冪/矩陣加速演算法矩陣
- POJ 3613 Cow Relays 矩陣乘法Floyd+矩陣快速冪矩陣
- HDU 4549 M斐波那契數列(矩陣快速冪+費馬小定理)矩陣
- BZOJ 3329 Xorequ:數位dp + 矩陣快速冪矩陣
- 從斐波那契到矩陣快速冪矩陣
- 第?課——基於矩陣快速冪的遞推解法矩陣
- 費馬小定理 + 費馬大定理 + 勾股數的求解 + 快速冪 + 矩陣快速冪 【模板】矩陣
- bzoj4887: [Tjoi2017]可樂(矩陣乘法+快速冪)矩陣
- HDU 2197 本原串 (規律+快速冪)
- poj--2778DNA Sequence+AC自動機+矩陣快速冪矩陣
- BZOJ3329: Xorequ(二進位制數位dp 矩陣快速冪)矩陣
- How to fix elements to the bottom of the container in css? (four ways)AICSS
- POJ 3233 Matrix Power Series (矩陣快速冪+等比數列二分求和)矩陣
- coca How many 搭配 大寫
- HDU - 1061 Rightmost Digit(二分快速冪板題)Git
- bzoj4547: Hdu5171 小奇的集合(矩陣乘法)矩陣
- 快速冪
- 快速乘/快速冪
- NYOJ 1409 快速計算【矩陣連乘】矩陣
- Leetcode 1365. How Many Numbers Are Smaller Than the Current Number (cpp)LeetCode
- 巨大的矩陣(矩陣加速)矩陣
- 鄰接矩陣、度矩陣矩陣
- 快速冪模板
- 奇異矩陣,非奇異矩陣,偽逆矩陣矩陣
- 資料結構:陣列,稀疏矩陣,矩陣的壓縮。應用:矩陣的轉置,矩陣相乘資料結構陣列矩陣
- 矩陣矩陣
- 越獄(快速冪)
- 求任意矩陣的伴隨矩陣矩陣