題意
求$(sqrt{2} + sqrt{3})^{2n} pmod {1024}$
$n leqslant 10^9$
Sol
看到題解的第一感受:這玩意兒也能矩陣快速冪???
是的,它能qwq。。。。
首先我們把$2$的冪乘進去,變成了
$(5 + 2sqrt{6})^n$
設$f(n) = A_n + sqrt{6} B_n$
那麼$f(n+1) = (A_n + sqrt{6} B_n ) * (5 + 2sqrt{6})$
乘出來得到
$A_{n + 1} = 5 A_n + 12 B_n$
$B_{n + 1} = 2A_n + B B_n$
那麼不難得到轉移矩陣
$$egin{pmatrix} 5 & 12 \ 2 & 5 end{pmatrix}$$
這樣好像就能做了。。
但是實際上後我們最終會得到一個類似於$A_n + sqrt{6}B_n$的東西,這玩意兒還是不能取模
考慮如何把$sqrt{6}$的影響消掉。
$(5 + 2 sqrt{6})^n = A_n + sqrt{6}B_n$
$(5 – 2 sqrt{6})^n = A_n – sqrt{6}B_n$
相加得
$(5 + 2 sqrt{6})^n + (5 – 2 sqrt{6})^n = 2A_n$
考慮到$0 < (5 – 2sqrt{6})^n < 1$
那麼
$$lfloor (5 + 2sqrt{6})^n
floor = 2A_n – 1$$
做完啦qwq
#include<cstdio> #include<cstring> #include<iostream> #define Pair pair<int, int> #define MP(x, y) #define fi first #define se second // #include<map> using namespace std; #define LL long long const LL MAXN = 101, mod = 1024; inline LL read() { char c = getchar(); LL x = 0, f = 1; while(c < `0` || c > `9`) {if(c == `-`) f = -1; c = getchar();} while(c >= `0` && c <= `9`) x = x * 10 + c - `0`, c = getchar(); return x * f; } int T, N; struct Matrix { LL m[5][5], N; Matrix() {N = 2; memset(m, 0, sizeof(m));} Matrix operator * (const Matrix &rhs) const { Matrix ans; for(int k = 1; k <= N; k++) for(int i = 1; i <= N; i++) for(int j = 1; j <= N; j++) (ans.m[i][j] += 1ll * m[i][k] * rhs.m[k][j] % mod) % mod; return ans; } }; Matrix fp(Matrix a, int p) { Matrix base; base.m[1][1] = 1; base.m[2][2] = 1; while(p) { if(p & 1) base = base * a; a = a * a; p >>= 1; } return base; } int main() { T = read(); while(T--) { N = read(); Matrix a; a.m[1][1] = 5; a.m[1][2] = 12; a.m[2][1] = 2; a.m[2][2] = 5; a = fp(a, N - 1); LL ans = (5 * a.m[1][1] + 2 * a.m[1][2]) % mod; printf("%I64d ", (2 * ans - 1) % mod); } return 0; } /**/