前言
在圖論中,在尋路最短路徑中除了Dijkstra
演算法以外,還有Floyd
演算法也是非常經典,然而兩種演算法還是有區別的,Floyd
主要計算多源最短路徑。
在單源正權值最短路徑,我們會用Dijkstra
演算法來求最短路徑,並且演算法的思想很簡單—貪心演算法:每次確定最短路徑的一個點然後維護(更新)這個點周圍點的距離加入預選佇列,等待下一次的丟擲確定。雖然思想很簡單,實現起來是非常複雜的,我們需要鄰接矩陣(表)儲存長度,需要優先佇列(或者每次都比較)維護一個預選點的集合。還要用一個boolean陣列標記是否已經確定、還要……
總之,Dijkstra
演算法的思想上是很容易接受的,但是實現上其實是非常麻煩的。但是單源最短路徑解算暫時還沒有有效的辦法,複雜度也為O(n2)
。
而在n點圖中想求多源最短路徑,如果從Dijkstra演算法的角度上,需要將Dijkstra
執行n次才能獲得所有點之間的最短路徑,不過執行n次Dijkstra演算法即可,複雜度為O(n3)
。但是這樣感覺很臃腫,程式碼量巨大,佔用很多空間記憶體。有沒有啥方法能夠稍微變變口味呢?
答案是有的,今天就帶大家一起了解一下牛逼轟轟的Floyed演算法。
演算法介紹
什麼是Floyed演算法?
Floyd演算法又稱為插點法,是一種利用動態規劃的思想尋找給定的加權圖中多源點之間最短路徑的演算法,與Dijkstra演算法類似。該演算法名稱以創始人之一、1978年圖靈獎獲得者、史丹佛大學電腦科學系教授羅伯特·弗洛伊德命名。
簡單的來說,演算法的主要思想是動態規劃(dp),而求最短路徑需要不斷鬆弛(熟悉spfa演算法的可能熟悉鬆弛)。
而演算法的具體思想為:
1 .鄰接矩陣(二維陣列)dist
儲存路徑,陣列中的值開始表示點點之間初始直接路徑,最終是點點之間的最小路徑,有兩點需要注意的,第一是如果沒有直接相連的兩點那麼預設為一個很大的值(不要因為計算溢位成負數),第二是自己和自己的距離要為0。
2 .從第1個到第n個點依次加入鬆弛計算,每個點加入進行試探列舉是否有路徑長度被更改(自己能否更新路徑)。順序加入(k列舉)鬆弛的點時候,需要遍歷圖中每一個點對(i,j雙重迴圈),判斷每一個點對距離是否因為加入的點而發生最小距離變化,如果發生改變(變小),那麼兩點(i,j)距離就更改。
2 .重複上述直到最後插點試探完成。
其中第2步的狀態轉移方程為:
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j])
其中dp[a][b]
的意思可以理解為點a到點b的最短路徑,所以dp[i][k]
的意思可以理解為i到k的最短路徑dp[k][j]
的意思為k到j的最短路徑.
我們們圖解一個案例,初始情況每個點只知道和自己直接相連的點的距離,而其他間接相連的點還不知道距離,比如A-B=2,A-C=3但是B-C在不經過計算的情況是不知道長度的。
加入第一個節點A
進行更新計算,大家可以發現,由於A的加入,使得本來不連通的B,C
點對和B,D
點對變得聯通,並且加入A後距離為當前最小,同時你可以發現加入A
其中也使得C-D
多一條聯通路徑(6+3),但是C-D
聯通的話距離為9遠遠大於本來的(C,D)
聯通路徑2,所以這條不進行更新。
我們們繼續加入第二個節點B
,這個點執行和前面A
相同操作進行。對一些點進行更新。因為和B相連的點比較多,可以產生很多新的路徑,這裡給大家列舉一下並做一個說明,這裡新路徑我統一用1表示,原來長度用0表示。
AF1=AB+BF=6+2=8 < AF0(∞) 進行更新
AE1=AB+BE=2+4=6 < AE0(∞) 進行更新
CE1=CB+BE=5+5=9 < CE0(∞) 進行更新
CF1=CB+BF=5+6=11<CF0(∞) 進行更新
EF1=EB+BF=4+6=10<EF0(∞) 進行更新
當然,也有一些新的路徑大於已有路徑不進行更新,例如:
AC1=AB+BC=2+5=7>AC0(3) 不更新
AD1=AB+BD=2+8=10>AD0(6) 不更新
……
更多路徑這裡就不一一列舉了。
後序加入C、D、E、F都是進行相同的操作,最終全部加完沒有路徑可以更新就結束停止。實際上這個時候圖中的連線就比較多了。這些連線都是代表當前的最短路徑。 這也和我們的需求貼合,我們最終要的是所有節點的最短路徑。每個節點最終都應該有5條指向不同節點的邊! 矩陣對應邊值就是點點之間最短路徑。
至於演算法的模擬兩部核心已經告訴大家了,大家可以自行模擬剩下的。
程式實現
而對於程式而言,這個插入的過程相當簡單。核心程式碼只有四行! 這個寫法適合有向圖和無向圖,無向圖的演算法優化後面會說。
程式碼如下
public class floyd { static int max = 66666;// 別Intege.max 兩個相加越界為負 public static void main(String[] args) { int dist[][] = { { 0, 2, 3, 6, max, max }, { 2, 0, max, max,4, 6 }, { 3, max, 0, 2, max, max }, { 6, max, 2, 0, 1, 3 }, { max, 4, max, 1, 0, max }, { max, 6, max, 3, max, 0 } };// 地圖 // 6個 for (int k = 0; k < 6; k++)// 加入第k個節點進行計算 { for (int i = 0; i < 6; i++)// 每加入一個點都要列舉圖看看有沒有可以被更新的 { for (int j = 0; j < 6; j++) { dist[i][j] = Math.min(dist[i][j], dist[i][k] + dist[k][j]); } } } // 輸出 for (int i = 0; i < 6; i++) { System.out.print("節點"+(i+1)+" 的最短路徑"); for (int j = 0; j < 6; j++) { System.out.print(dist[i][j]+" "); } System.out.println(); } }}
執行結果為:
可以自行計算,圖和上篇的Dijkstra用的圖是一致的,大家可以自行比對,結果一致,說明我們麼的結果成功的。
當然,在你學習的過程中,可以在每加入一個節點插入完成後,列印鄰接矩陣的結果,看看前兩部和筆者的是否相同(有助於理解),如果相同,則說明正確!
對於加入點更新你可能還是有點疑惑其中的過程,那我們麼就用一個區域性來演示一下幫助你進一步理解Floyd演算法,看其中AB最短距離變化情況祝你理解:
小試牛刀
自己會沒會?刷一道題就可以知道了,剛好力扣1334是一道Floyd演算法解決的問題。
題目描述為:
有 n 個城市,按從 0 到 n-1 編號。給你一個邊陣列 edges,其中 edges[i] = [fromi, toi, weighti] 代表 fromi 和 toi 兩個城市之間的雙向加權邊,距離閾值是一個整數 distanceThreshold。
返回能通過某些路徑到達其他城市數目最少、且路徑距離 最大 為 distanceThreshold 的城市。如果有多個這樣的城市,則返回編號最大的城市。
注意,連線城市 i 和 j 的路徑的距離等於沿該路徑的所有邊的權重之和。
示例1:
輸入:n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4
輸出:3
解釋:城市分佈圖如上。
每個城市閾值距離 distanceThreshold = 4 內的鄰居城市分別是:
城市 0 -> [城市 1, 城市 2]
城市 1 -> [城市 0, 城市 2, 城市 3]
城市 2 -> [城市 0, 城市 1, 城市 3]
城市 3 -> [城市 1, 城市 2]
城市 0 和 3 在閾值距離 4 以內都有 2 個鄰居城市,但是我們必須返回城市 3,因為它的編號最大。
示例2:
輸入:n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2
輸出:0
解釋:城市分佈圖如上。
每個城市閾值距離 distanceThreshold = 2 內的鄰居城市分別是:
城市 0 -> [城市 1]
城市 1 -> [城市 0, 城市 4]
城市 2 -> [城市 3, 城市 4]
城市 3 -> [城市 2, 城市 4]
城市 4 -> [城市 1, 城市 2, 城市 3]
城市 0 在閾值距離 2 以內只有 1 個鄰居城市。
提示:
2 <= n <= 100
1 <= edges.length <= n * (n - 1) / 2
edges[i].length == 3
0 <= fromi < toi < n
1 <= weighti, distanceThreshold <= 10^4
所有 (fromi, toi) 都是不同的。
思路分析:
拿到一道題,首先就是要理解題意,而這道題的意思藉助案例也是非常能夠理解,其實就是判斷在distanceThreshold範圍內找到能夠到達的最少點的編號,如果多個取最大即可。正常求到達最多情景比較多這裡求的是最少的,但是思路都是一樣的。
這道題如果使用搜尋,那複雜度就太高了啊,很明顯要使用多源最短路徑Floyd演算法,具體思路為;
1 .先使用Floyd演算法求出點點之間的最短距離,時間複雜度O(n3)
2 . 統計每個點與其他點距離在distanceThreshold之內的點數量,統計的同時看看是不是小於等於已知最少個數的,如果是,那麼儲存更新。
3 .返回最終的結果。
實現程式碼:
class Solution {
public int findTheCity(int n, int[][] edges, int distanceThreshold) {
int dist[][]=new int[n][n];
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++){
//保證資料比最大二倍大(兩相加不能比它大),並且不能溢位,不要Int最大 相加為負會出錯
dist[i][j]=1000000;
}
dist[i][i]=0;
}
for(int arr[]:edges){
dist[arr[0]][arr[1]]=arr[2];
dist[arr[1]][arr[0]]=arr[2];
}
for(int k=0;k<n;k++){
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++){
dist[i][j] = Math.min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
}
int min=Integer.MAX_VALUE;
int minIndex=0;
int pathNum[]=new int[n];//儲存距離
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
if(dist[i][j]<=distanceThreshold){
pathNum[i]++;
}
}
if(pathNum[i]<=min) {
min = pathNum[i];
minIndex=i;
}
}
return minIndex;
}
}
那麼想一下優化空間:Floyd演算法還有優化空間嘛?
有的,這個是個無向圖,也就是加入點的時候列舉其實會有一個重複的操作過程(例如列舉AC和CA是效果一致的),所以我們在Floyd演算法的實現過程中過濾掉重複的操作,具體程式碼為:
class Solution {
public int findTheCity(int n, int[][] edges, int distanceThreshold) {
int dist[][]=new int[n][n];//儲存距離
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++){
dist[i][j]=1000000;
}
dist[i][i]=0;
}
for(int arr[]:edges){
dist[arr[0]][arr[1]]=arr[2];
dist[arr[1]][arr[0]]=arr[2];
}
for(int k=0;k<n;k++){
for(int i=0;i<n;i++) {
for(int j=i+1;j<n;j++){//去掉重複的計算
dist[i][j] = Math.min(dist[i][j], dist[i][k] + dist[k][j]);
dist[j][i]=dist[i][j];
}
}
}
int min=Integer.MAX_VALUE;
int minIndex=0;
int pathNum[]=new int[n];//
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
if(dist[i][j]<=distanceThreshold){
pathNum[i]++;
}
}
if(pathNum[i]<=min) {
min = pathNum[i];
minIndex=i;
}
}
return minIndex;
}
}
尾聲
對於Floyd
演算法,如果初次接觸不一定能夠理解這個鬆弛的過程。
Floyd
像什麼呢,最終最短路徑大部分都是通過計算得到而儲存下來直接使用的,我覺得它和MySQL檢視有點像的,檢視是一個虛表在實表上計算獲得的,但是計算之後各個資料就可以直接使用,Floyd
是在原本的路徑圖中通過一個動態規劃的策略計算出來點點之間的最短路徑。
Floyd
和Dijkstra
是經典的最短路徑演算法,兩者有相似也有不同。在複雜度上,Dijkstra
演算法時間複雜度是O(n2)
,Floyd
演算法時間複雜度是O(n3)
;在功能上,Dijkstra是求單源最短路徑,並且路徑權值不能為負,而Floyd
是求多源最短路徑,可以有負權值;演算法實現上,Dijkstra 是一種貪心演算法實現起來較複雜,Floyd
基於動態規劃實現簡單;兩個作者Dijkstra
和Floyd
都是牛逼轟轟的大人物,都是圖靈獎的獲得者。
除了Floyd
演算法,堆排序演算法heapSort
也是Floyd
大佬發明的,屬實佩服!
Floyd演算法,俗稱插點法,不就一個點一個點插進去更新用到被插點距離嘛!
好啦,Floyd演算法就介紹到這裡,如果對你有幫助,請動動小手點個贊吧!蟹蟹。也歡迎關注個人技術公眾號:bigsai
獲取最新分享。