人工智慧專案需要避免的9個錯誤
2018-12-21 10:22:52
從建立孤立的概念證明到缺乏定義的成功標準,一系列的陷阱都會破壞你人工智慧專案的商業前景。
近年來企業對人工智慧的商業熱情一直有增無減。IDC的最新預測顯示,全球企業在認知和人工智慧系統(從聊天機器人到深度學習,再加上為這些系統提供動力的基礎設施)上的支出將從今年的240億美元增至2022年的776億美元,增長將達到兩倍以上。
更為明顯的是,人工智慧已經從早期的採用者變成了主流的商業用例,幾乎每個行業都有廣泛的組織在探索試點專案,並將人工智慧投入生產。但這並不意味著在這過程中是萬無一失,毫無風險的。如果你不想浪費你將要花在人工智慧上的資金,這裡有一些常見的錯誤需要避免。
貪多必失
“不要試圖在第一天就把海洋煮沸,”微軟雲人工智慧團隊的負責人Lance Olsen告訴CIO.com。你不可能在一夜之間就能用人工智慧來改變你的整個商業決策過程,所以最好從小處著手,在你獲得專業知識的同時採取漸進的步驟。
尋找你容易摘到的果實。在處理最重要的系統之前,你需要開發一個系統先用於實驗和驗證實驗結果。他警告稱:“不要一開始就進行最大的投資。”
建立獨立的概念驗證系統
構建一個一次性的人工智慧系統並不能幫助你建立人工智慧的整體流程,也不是你現有資料管道的一部分,無法讓你向前走得很遠。你需要為每個專案建立一個可持續的AI資產。在這裡,可持續性意味著一個能夠產生足夠投資回報率的系統,你可以持續投資該系統以實現進一步的開發和擴充套件。每次你這樣做的時候,都將有助於為整個業務建立AI功能,而不僅僅是一個特定團隊的新工具。
在你已經在做的商業分析的基礎上,將這些歷史系統轉化為預測能力。Olsen說:“從投資最佳化開始,利用你現有的管道,在你已經做的事情上進行最佳化。”然後你就可以繼續進行更革命性的專案,對你的流程工作方式做出更大的改變。
沒有合適的技術基礎設施
根據麥肯錫最近的一份報告,在開始人工智慧之前,你需要投資核心的和更先進的數字技術。已經在雲端計算、移動和網路開發、大資料和分析領域擁有專業知識的公司採用人工智慧工具的可能性是其他公司的三倍。四分之三採用人工智慧的組織表示,他們依賴於從現有的數字能力中學到的東西。換句話說:如果你的企業還沒有準備好利用雲端計算和資料分析,那麼你可能也還沒有準備好接受人工智慧。
缺乏資料
絕大多數人工智慧系統——包括企業自行構建的——都是機器學習系統,而機器學習需要資料。正如微軟公司副總裁Julia White在公司最近的商業AI活動上所說的,“我們新的機器人會在哪裡?或者說,新的機器人會從哪裡學習呢?”事實上,如果沒有好的資料,AI會傷害你而不是幫助你,因為你實際上是在對一些沒有實際證據的事情充滿信心。
此外,如果你只有和你的競爭對手一樣的公共資料,你只會得到和你的競爭對手一樣的洞察力,所以你需要使用你組織自己的獨特資料。假設你已經收集了正確的資料,這些資料也還需要進行清理和標準化。
不要低估在這方面所需的投資;收集和清理資料通常佔了資料科學家工作的80%左右。從你已經用於商業智慧和分析的資料開始,還可以更容易地確保你的人工智慧系統將支援關鍵的業務流程,從而使其更有可能發揮作用。這也將有助於你定義資料準備的工具和流程,你可以使用這些工具和流程來處理尚未使用的資料。
缺乏評估和衡量成功的標準
資料科學就是科學。你需要有一個關於如何改進商業決策、銷售、客戶支援或其他任何你想用AI做的事情的假設,你必須在行動中測試並評估結果。
這意味著你需要設計如何衡量一個專案是成功的——無論是在採用還是結果方面。這可以轉化為使專案與員工的業績截止日期保持一致,比如銷售和營銷團隊的90天前景,或者聯絡中心的小時配額。這也意味著擁有一個不使用新系統的控制組,因為如果你在開發新系統上投入了大量資金,可能會得到一個過於主觀的結論。你需要確保人們在做資料驅動的決定,而不是依靠直覺;如果他們習慣性地忽略資料,那麼即使讓人工智慧工具向他們展示資料也將無濟於事。你還需要提前決定成功是什麼樣子的,因為這是你正在測試的假設。你想要更多的客戶訂單還是更大的訂單?你想減少客戶支援電話,還是需要更少的時間來解決打電話的客戶?
開始時不知道人工智慧能幫你解決什麼問題
“人工智慧”這個詞的問題在於,它能讓人覺得一切皆有可能。在過去的幾年裡,人工智慧行業已經取得了巨大的進步,但是你仍然需要知道人工智慧可以實際提供什麼,以及它將如何整合到你現有的系統和業務流程中。然後你需要知道你的組織有什麼問題,人工智慧可以幫助你解決什麼問題。你不能因為其他公司都在採用人工智慧,就採用它。
“高管們在求助於人工智慧之前需要考慮兩件事,”Cheetah Digital的分析服務高階總監Jacob Davis告訴CIO.com。“第一,我們真正想要解決的是什麼?我們現在如何解決這個問題並掌握手頭的資料?如果你不能想出一些東西,即使是理論上的,那麼可能在你目前狀態的可能性範圍內,AI也無法幫到你。第二:我考慮人工智慧是因為我聽到了很多關於它的炒作嗎?你必須真正評估你對這類解決方案的渴望,否則,你可能會在一些無法增加真正價值的東西上投入大量資金。”
沒有合適的人才也沒有合適的專案
你將需要資料科學專業的知識,如果您沒有專門的資料科學團隊,那麼這些專業知識通常會在IT團隊中建立起來。無論它在哪裡,重要的是不要把它孤立在一個卓越的中心。Ovum最近為資料科學軟體供應商Dataiku所做的一項針對全球2000個生產人工智慧專案的組織的研究表明,要使專案成功,這些專家需要參與他們正在解決的問題所在的業務團隊,以及專案管理和開發團隊中去。因為中央團隊可能會錯過當地業務部門的一些文化差異。
“一次又一次,我們看到世界各地的公司和跨行業的團隊無法開始他們的資料工作,因為他們無法幫助不同地區的這些人共同合作——更不用說擁有不同技能以及不同型別的人了,“Dataiku的執行長Florian Douetteau說。如果你不能讓資料科學專家永久駐紮在關鍵位置,可以利用中央專家的協作和知識轉移來幫助培養當地的資料科學技能。
建立你自己的人工智慧能力
雖然IBM Watson廣為人知,但即使是預先構建的人工智慧服務也需要時間和專業知識來與你自己的系統和流程整合,並且必須仔細評估,但是很少有企業具備從頭開始構建一切的專業知識。如今,AI工具越來越多地內建於SaaS產品中,例如Salesforce、Dynamics和Adobe的營銷雲,儘管它們很可能是你需要額外付費的外掛。Azure、AWS和Google也提供了雲端計算機器學習服務,這些服務可以提供特定的“認知服務”,例如機器視覺和語音識別,你可以定製並構建到自己的工具和服務中,你也可以提供你自己需要和可以適應的通用解決方案庫。利用這些工具快速起步,然後考慮需要從頭構建哪些其他模型和工具,因為員工對人工智慧所能帶來的生產率優勢會更加適應。
期待人工智慧徹底取代人力
像自動化一樣,人工智慧將在人類和人工智慧系統協同工作時給你帶來最大的效能和生產力提升。《哈佛商業評論》最近的一項研究顯示,隨著企業採用越來越多的人機協作,績效提高了4到7倍。為了獲得這種協作,業務團隊需要參與評估人工智慧系統究竟能夠為他們實際做些什麼。能夠為專家提供建議、多種選擇、決策支援和升級的人工智慧工具,顯然比那些在沒有任何人工參與的情況下僅僅給出簡單的yes/no答案的工具來說更加有用。
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/29829936/viewspace-2286010/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 5個需要避免的CSS錯誤CSS
- MES專案執行:3個要避免的錯誤
- 學習Web前端需要避免哪些錯誤Web前端
- 1000多個專案中的十大JavaScript錯誤以及如何避免JavaScript
- 專案經理應該避免的一些錯誤總結
- 開發者常犯的 9 個錯誤
- 【精益生產】專案管理要避免的錯誤,請引以為戒!專案管理
- 專業Web設計師應該避免的6個關鍵錯誤Web
- 要避免的5個雲網路部署錯誤
- CIO要避免的7個資料治理錯誤!
- 使用 Vue 3 時應避免的 10 個錯誤Vue
- CIO應避免的三個低程式碼部署錯誤
- 避免Java堆空間錯誤的5個步驟Java
- 可簡單避免的三個 JavaScript 釋出錯誤JavaScript
- 如何避免這3 個電子郵件錯誤
- 使用Python變數時要避免的3個錯誤Python變數
- 網站設計中應當避免的8個錯誤網站
- PHP語言需要避免的10大誤區PHP
- PHP 語言需要避免的 10 大誤區PHP
- 要避免的七個災難性的雲端計算錯誤
- 增強Web可用性,你需要避免的七大設計錯誤Web
- 專案進度延誤該如何避免和克服?
- Golang 需要避免踩的 50 個坑Golang
- SAP系統合併後整合:應避免的4個錯誤
- 使用Python時常見的9個錯誤Python
- 【譯】Go 專案開發裡最常犯的 10 個錯誤Go
- SAP Spartacus 專案開發時需要注意的一些常見錯誤
- 【譯】避免這些常見的JavaScript錯誤JavaScript
- 避免專案失敗的六個基本關注點
- 專案整合Swagger遇到的錯誤Swagger
- IT專案管理的六種錯誤思維專案管理
- 成功管理多專案的9個策略
- pom-建立web專案錯誤Web
- android 新專案狗屎錯誤Android
- 此錯誤需要修改MinGW中的 cstdlib檔案
- 學習用 Python 程式設計時要避免的 3 個錯誤Python程式設計
- iOS開發過程中使用Core Data應避免的十個錯誤iOS
- 專案提示錯誤找不到git檔案Git