百億美元的AI晶片市場誰是王者?
AI晶片領域玩家眾多,作品也在不斷更新迭代。然而,到目前為止,完全符合描述和基準測試的AI晶片寥寥無幾。即便是谷歌的TPU,也不足以支撐起AI更為長遠的發展。
人工智慧的崛起有三個基本要素: 演算法、資料和算力。 當雲端計算廣泛應用,深度學習成為當下AI研究和運用的主流方式時,AI對算力的要求正快速提升。對AI晶片的持續深耕,就是對算力的不懈追求。
1.AI晶片方向眾多 企業集中於“初級”賽道
目前,在摩爾定律的驅動下,CPU可以在合理的算力、價格、功耗和時間內為人工智慧提供所需的計算效能。但AI的許多資料處理涉及矩陣乘法和加法,而CPU的設計與最佳化是針對成百上千種工作任務進行的,所以用CPU來執行AI演算法,其內部大量的其他邏輯對目前的AI演算法來說是完全浪費的,無法讓CPU達到最佳的價效比。而面對爆發式的計算需求,通用晶片將更加無以為繼。
因此,具有海量平行計算能力、能夠加速AI計算的AI晶片應運而生。面對不斷增多的B端應用場景,越來越多的AI晶片公司加入角逐。
實際上,AI晶片的研發有兩個不同的方向: 第一,在現有的計算架構上新增專用加速器 ,即“AI加速晶片”,它是確定性地加速某類特定的演算法或任務,從而達到目標應用領域對速度、功耗、記憶體佔用和部署成本等方面的要求。
第二,完全重新開發,創造模擬人腦神經網路的全新架構,即“智慧晶片”。 它讓晶片像人一樣能使用不同的AI演算法進行學習和推導,處理包含感知、理解、分析、決策和行動的一系列任務,並且具有適應場景變化的能力。目前,這類晶片的設計方法有兩種: 一種是基於類腦計算的“神經擬態晶片”;另一種是基於可重構計算的“軟體定義晶片”。
“智慧晶片”仍處於初期開發階段,不適合商業應用。因此,企業們目前主要採用的方法是在現有的計算架構上新增人工智慧加速器。AI加速晶片的研發也分為兩種主要的方式: 一種是利用已有的GPU、眾核處理器、DSP、FPGA晶片來做軟硬體最佳化;另一種則是設計專用的晶片,也就是ASIC。
GPU、FPGA以及ASIC已成為當前AI晶片行業的主流。 其中GPU算是目前市場上AI計算最成熟、應用最廣泛的通用型晶片了,這是一種由大量核心組成的大規模平行計算架構,專為同時處理多重任務而設計的晶片。GPU桌面和伺服器市場主要由英偉達、AMD瓜分,移動市場以高通、蘋果、聯發科等眾多公司為主。
ASIC是一種為特定目的、面向特定使用者需求設計的定製晶片,效能強、體積小、功耗低、可靠性高。在大規模量產的情況下,還具備成本低的特點。近年來,越來越多的公司開始採用ASIC晶片進行深度學習演算法加速,其中表現最為突出的就是TPU。這是谷歌為提升AI計算能力同時大幅降低功耗,專為機器學習全定製的人工智慧加速器專用晶片,效能非常出眾。
此外,國內企業寒武紀開發的Cambricon系列處理器也廣泛受到了關注。ASIC的全球市場規模從2012年的163億美元增長到2017年257億美元,預計未來5年將保持18.4%年複合增長,到2022年達到597億美元。目前, 市場格局還比較碎片化。
FPGA整合了大量的基本閘電路以及儲存器,其靈活性介於CPU、GPU等通用處理器和專用積體電路ASIC之間。我國在這方面剛剛起步,與FPGA四大巨頭賽靈思、英特爾、萊迪思、美高森美存在著巨大的差距。從市場份額來看,賽靈思和英特爾合計佔到市場的90%左右,其中賽靈思超過50%。2017年,FPGA的全球市場規模為59.6億美元,預計到2023年將達到98.0億美元。
2.AI晶片市場空間巨大 未必能容納得下大量玩家
根據Gartner的預測資料,全球人工智慧晶片市場規模將在未來五年內呈現飆升, 從2018年的42.7億美元成長至343億美元,增長超過7倍,可以說,未來AI晶片市場將有一個很大的增長空間。
不過,對於很多初創企業而言,研發晶片將要面臨時間和資金上的巨大挑戰。在時間上,晶片研發從立項到上市通常需要兩年左右的時間。相較之下,更重要的一點是晶片成本很高。
在人工智慧應用領域,依據晶片的部署位置和任務需求,會採用不同的製程。在一般情況下,終端裝置的晶片經常會採用65nm和28nm製程;邊緣端和部分移動端裝置的晶片,製程基本為16nm或10nm;而云端晶片通常是7nm。
晶片製程決定開發成本。根據IBS的估算資料,按照不同製程,65nm晶片開發費用為2850萬美元,5nm晶片開發費用則達到了54220萬美元。因此,在晶片的研發上,對錯誤的容忍度幾乎是零。目前,較為成熟的是40nm和55nm工藝,而對於當下先進的7nm工藝,很多企業的技術還不夠成熟。
高昂的開發費用,加上以年計算的開發週期,AI晶片企業在融資的早期階段就需要大量資金浥注,這樣才能撐過沒有產品銷售的階段。而政府的補助和投資者的資金,往往會傾向於那些銷售業績好的公司。且資本市場希望能有一個較短的投資週期。因此,融資也成為一道門檻。
此外,由於晶片開發週期通常需要1-3年的時間,在正常的時間裡軟體會有一個非常快速的發展,但演算法在這個期間內也將會快速更新,晶片如何支援這些更新也是難點。
而從長遠來看,AI晶片本身的技術發展還要面臨如下的困境。
目前主流的AI晶片採用的是馮諾依曼架構。在馮·諾伊曼體系結構中,晶片在計算上是採取1進1出的方式,資料從處理單元外的儲存器提取,處理完之後再寫回儲存器,如此依序讀取完成任務。由於運算部件和儲存部件存在速度差異,當運算能力達到一定程度,訪問儲存器的速度無法跟上運算部件消耗資料的速度,再增加運算部件也無法得到充分利用,這不僅是AI晶片在實現中的瓶頸,也是長期困擾計算機體系結構的難題。?
另外,要滿足人工智慧發展所需的運算能力,就需要在CMOS工藝上縮小整合尺寸,不斷提高晶片的系統效能。如今,7nm已經開始量產,5nm節點的技術定義已經完成。但由此也產生了CMOS 工藝和器件方面的瓶頸。首先,由於奈米級電晶體所消耗的能量非常高,這使得晶片密集封裝的實現難度很大。其次,一個幾奈米的CMOS器件,其層厚度只有幾個原子層,這樣的厚度極易導致電流洩漏,而工藝尺寸縮小所帶來的效果也會因此受到影響。
儘管AI晶片市場的增長空間很大,但未必能夠容得下足夠多的企業。 行業本身的特性以及當下AI所處的發展階段,都決定了AI晶片企業會有一個相對較長的挫折期 ,而在此過程中,被資本炒出的泡沫也會隨之壓縮。
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/29829936/viewspace-2643513/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 手機晶片誰是AI之王?高通、聯發科均超華為晶片AI
- AI晶片市場,必有Graphcore的一席之地AI晶片
- AI晶片之爭,你選誰?AI晶片
- 【AI晶片】AI晶片卡位戰:誰贏得自動駕駛處理器,誰就贏得了AI時代AI晶片自動駕駛
- 誰來取代Google?誰會是下一個歸來的王者?Go
- 刷爆了!BAT這場AI晶片之戰,你更支援誰?BATAI晶片
- AI語音巨頭鏖戰語音晶片市場AI晶片
- 雲端計算pk本地:誰是生成式AI的未來戰場?AI
- 手機AI晶片大盤點,誰最強?AI晶片
- AI晶片混戰,誰能挑戰英偉達?AI晶片
- AI晶片市場最強預判:華為蘋果高通為何數億美元豪賭7nm?AI晶片蘋果
- AI晶片市場現狀及企業競爭狀況AI晶片
- 新火種AI | 誰是AI時代的“抖音”?AI
- 為何巨頭紛紛投入伺服器AI晶片市場?伺服器AI晶片
- 高通釋出獨立AI晶片,搶食推理加速器市場AI晶片
- 誰是謝源?廣西理科探花、阿里AI晶片帶頭大哥、新晉ACM Fellow阿里AI晶片ACM
- 中國遊戲公司透視:誰是第三個百億俱樂部成員?遊戲
- AI變革各行各業,市場紅利誰能獨佔鰲頭AI
- 人工智慧市場熱度持續增長,雲知聲AI晶片加速AI應用的落地人工智慧AI晶片
- 外媒點評全球最佳20款智慧手機:誰是王者
- 男人化妝怎麼了,百億市場待開發
- 騰訊推無人機或觸發百億消費級市場無人機
- 指紋、面部、虹膜,誰才是AI手機身份識別最強王者?AI
- AI諮詢會是下一個萬億市場嗎?AI
- Meta因資料洩漏被罰1700萬歐元 資料安全合規將催生百億美元市場
- Databricks的16億美元融資對企業AI市場意味著什麼?AI
- WIZnet晶片在智慧家居市場的應用晶片
- 場景還是場景,配送服務正變天?AI晶片也要走向終端應用的競爭? | AI WeeklyAI晶片
- Strategy Analytics:蘋果ARM架構晶片對PC晶片市場的影響蘋果架構晶片
- AI晶片年度最大融資,地平線將融資10億美元!AI晶片學者地圖出爐AI晶片地圖
- 2015電影電商市場盤點:MBAT,誰是最後的贏家?BAT
- 美國AI晶片初創公司SambaNova獲5600萬美元融資AI晶片Samba
- AI晶片獨角獸寒武紀新融資完成:估值逾20億美元,國家隊基金入場AI晶片
- 內購、廣告、買斷 誰是當前手遊市場中獨立遊戲的最佳盈利模式?遊戲模式
- Tractica:2025年基於AI的汽車軟體市場將達到46億美元AI
- 2020中國桌遊產業現狀:百億市場的背後仍是藍海產業
- 魅藍3和紅米3對比評測 誰是百元機王者?
- Tractica:2025年汽車AI市場規模將達到265億美元AI