本文主要作為自己的學習筆記,並不具備過多的指導意義。
暴力遞迴
-
把問題轉化為規模縮小了的同類問題的子問題
-
有明確的不需要繼續遞迴的條件
base case
求n!的結果
非遞迴版本
從非依賴關係入手。明確的知曉n!=1×2×3×...×n,然後按照順序編寫演算法即可
func getFactorial1(n : Int) -> Int {
var res = 1
for i in 1..<n+1 {
res = res * i
}
return res
}
複製程式碼
遞迴版本
從依賴關係入手。n已知,嘗試解決(n-1)!
func getFactorial2(n : Int) -> Int {
if n == 1 {
return 1
}
return n * getFactorial2(n: n-1)
}
複製程式碼
漢諾塔問題
列印N層漢諾塔從最左邊移動到最右邊的全部過程
每次一個,不能打壓小隻能小壓大
在第N層的問題上,需要完成以下三個狀態:
第N層的完成依賴N-1的完成,而第N-1層的完成又依賴N-1層的完成。
/// 移動1-N層漢諾塔
///
/// - Parameters:
/// - n: 需要移動到的層數
/// - form: 從哪根開始
/// - to: 從哪根結束
/// - help: 空那根
func hanoiGame(n : Int ,form :String ,to :String ,help :String) {
if n == 1 {//只移動第一層,直接移動即可
print("Move 1 from " + form + " to " + to)
}else {
hanoiGame(n: n-1, form: form, to: help, help: to) //將第 1到n-1 層移動到 中間
print("Move \(n) " + "from " + form + " to " + to) //將第 n 層移動到 最右
hanoiGame(n: n-1, form: help, to: to, help: form) //將第 1到n-1 層移動到 最右
}
}
hanoiGame(n: 3, form: "左", to: "右", help: "中")
//列印
Move 1 from 左 to 右
Move 2 from 左 to 中
Move 1 from 右 to 中
Move 3 from 左 to 右
Move 1 from 中 to 左
Move 2 from 中 to 右
Move 1 from 左 to 右
複製程式碼
列印字串能組成的所有字串
輸入abc 列印:abc,ab,ac,a,bc,b,c
將字串轉化成陣列,每個位置都有兩個選擇:列印&&跳過。以此遞迴
程式碼
func printStr(str :String) {
printAllSub(str: wordToArr(word: str), i: 0, res: "")
}
func printAllSub(str :[String] ,i :Int ,res :String) {
if i == str.count {
print(res)
}else {
printAllSub(str: str, i: i+1, res: res+str[i]) //列印當前位置
printAllSub(str: str, i: i+1, res: res) //不列印當前位置
}
}
func wordToArr(word:String) -> Array<String> {
var res : [String]
res = Array.init()
if word.count == 0 {
return res
}
let string = (word as NSString)
for i in 0..<string.length {
res.append(string.substring(with: NSMakeRange(i, 1)))
}
return res
}
複製程式碼
母牛數目問題
有一頭母牛,它每年年初生一頭小母牛。每頭小母牛從第四個年頭開始,每年年初也生一頭小母牛。請程式設計實現在第n年的時候,共有多少頭母牛?
當思維不夠直觀的時候,不妨列舉一下試試查詢規律
F(N) = F(N-1) + F(N-3)
第五年 = 第四年存活的 + A與第二年出生的B所生的兩個
需要注意:如果N-3為負數則不用計算,只計算母牛自己生的一個即可
func func(n : Int) -> Int {
if n == 1 {
return 1
}
if n - 3 <= 0 {
return func1(n: n-1) + 1
}else {
return func1(n: n-1) + func1(n: n-3)
}
}
複製程式碼
二維陣列--從左上角到右下角最大值
只能向右或向下走
經典的動態規劃題目,但我們可以先從遞迴做起
/// 二維陣列--從左上角到右下角最大值
///
/// - Parameters:
/// - matrix: 二維矩陣
/// - x: x軸座標
/// - y: y軸座標
/// - Returns: 當前點到右下角最小距離
func walk(matrix : [[Int]] ,x :Int ,y :Int) -> Int {
if (x == matrix.count-1) && (y == matrix[0].count-1) { //已經到最後
return matrix[x][y] //返回當前節點
}
if x == matrix.count-1 { //已經到x軸末尾
return matrix[x][y] + walk(matrix: matrix, x: x, y: y+1) //當前節點+y軸下一位
}
if y == matrix[0].count-1 { //已經到y軸末尾
return matrix[x][y] + walk(matrix: matrix, x: x+1, y: y) //當前節點+x軸下一位
}
//當前節點+min(x軸下一位,y軸下一位)
return matrix[x][y] + min(walk(matrix: matrix, x: x+1, y: y), walk(matrix: matrix, x: x, y: y+1))
}
複製程式碼
暴力遞迴的弊端
第一次進入walk(0,0)
時,將會遞迴呼叫藍色位置walk(1,0)
與walk(0,1)
。
而在進入walk(1,0)
時,又將遞迴呼叫walk(2,0)
與walk(1,1)
並且進入walk(0,1)
時,又將遞迴呼叫walk(0,2)
與walk(1,1)
此時walk(1,1)
將會執行兩次,其之後的遞迴計算也指數級的重複。
這就是動態規劃的意義,解決暴力遞迴重複執行的缺點進行優化
動態規劃
所有的動態規劃,都是從暴力遞迴嘗試優化(減少重複計算)而來
面試中,對於一個沒有見過的動態規劃。我們可以先寫出一個遞迴的嘗試版本,在驗證正確性之後嘗試改成動態規劃。
遞迴方法的後效性
如上文中所提到的暴力遞迴的弊端
一樣:有些暴力遞迴會存在重複狀態,並且這些重複狀態的結果與到達其的路徑無關(狀態的引數確定,返回值則確定
)。
什麼樣的問題可以改成動態規劃
對於無後效性遞迴
,可以改成動態規劃的版本。
也有反例:比如漢諾塔問題,每一步列印都會對整體的列印結果造成影響。就叫有後效性遞迴,無法進行動態規劃。
無後效性遞迴如何改成動態規劃的通用方法
以二維陣列--從左上角到右下角最大值
題目為例:
-
分析可變引數,建立狀態表
以每個狀態的return結果建立一個二維陣列。
-
找到自己需要的最終狀態位置(0,0)
-
回到base case 中,對不被依賴的位置進行設定
-
對普遍位置進行設定
-
最終得到目標位置
陣列中元素是否能組成指定的和
先寫一個正常的暴力遞迴嘗試版本,與之前列印字串能組成的所有字串
的問題基本一致
/// 陣列中元素是否能組成指定的和
///
/// - Parameters:
/// - arr: 陣列
/// - i: 當前位置
/// - sum: 已經求的和
/// - aim: 目標和
/// - Returns: 結果
func isSum(arr :[Int] ,i :Int ,sum :Int ,aim :Int) -> Bool {
if i == arr.count { //陣列末尾已經嘗試結束
return aim==sum //直接比對
}
let useC = isSum(arr: arr, i: i+1, sum: sum+arr[i], aim: aim) //嘗試新增當前位置
let unuseC = isSum(arr: arr, i: i+1, sum: sum, aim: aim) //不新增當前位置
return useC || unuseC
}
複製程式碼
如何轉變成動態規劃
-
簡化表示式,並建立動態規劃表
只有兩個可變引數,可以簡化成
F(i,sum)
DP表的設計行為sum(最後一位為所有元素之和),列為i。 在程式碼上,將作為一個二維陣列存在
-
確定目標位置
-
base case中找到不被依賴的位置 只有在F(N,Aim)時,
aim==sum
才會返回true
-
對普遍位置進行設定 某一個位置
F(i,sum1)
的狀態依賴於F(i+1,sum1)
與F(i+1,sum1)+arr[i]
而F(i+1,sum1)+arr[i]
又作為新的sum值Sum2
存在於DP表內。 兩個位置有一個為Aim,則將返回true -
推回到最初位置