Codeforces 235E Number Challenge (神定理+莫比烏斯反演)
E. Number Challenge
time limit per test:3 seconds
memory limit per test:512 megabytes
Let's denote d(n) as the number of divisors of a positive integern. You are given three integers a, b and c. Your task is to calculate the following sum:
Find the sum modulo 1073741824(230).
Input
The first line contains three space-separated integersa, b andc (1 ≤ a, b, c ≤ 2000).
Output
Print a single integer — the required sum modulo 1073741824 (230).
Sample test(s)
Input
2 2 2
Output
20
Input
4 4 4
Output
328
Input
10 10 10
Output
11536
Note
For the first example.
- d(1·1·1) = d(1) = 1;
- d(1·1·2) = d(2) = 2;
- d(1·2·1) = d(2) = 2;
- d(1·2·2) = d(4) = 3;
- d(2·1·1) = d(2) = 2;
- d(2·1·2) = d(4) = 3;
- d(2·2·1) = d(4) = 3;
- d(2·2·2) = d(8) = 4.
So the result is 1 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 20.
題目連結:http://codeforces.com/contest/235/problem/E
題目大意:就是算那個公式的值
題目分析:第一次寫DIV1的E,還是CLJ出的題,直接給出rng_58給的一個公式吧:
知道這個公式以後基本就可以秒掉這題了,先列舉i的因子,然後在gcd(i, j) = gcd(i, k) = 1的條件下,為了讓gcd(j, k) = 1,直接對b,c進行莫比烏斯反演,跑出來2000ms+,這裡有個優化,考慮到a,b,c的範圍不是很大,可以對gcd記憶化,瞬間變成500ms+
#include <cstdio>
#include <algorithm>
#define ll long long
using namespace std;
int const MAX = 2005;
int const MOD = 1 << 30;
int gd[MAX][MAX], mob[MAX], p[MAX];
bool noprime[MAX];
void Mobius()
{
int pnum = 0;
mob[1] = 1;
for(int i = 2; i < MAX; i++)
{
if(!noprime[i])
{
p[pnum ++] = i;
mob[i] = -1;
}
for(int j = 0; j < pnum && i * p[j] < MAX; j++)
{
noprime[i * p[j]] = true;
if(i % p[j] == 0)
{
mob[i * p[j]] = 0;
break;
}
mob[i * p[j]] = -mob[i];
}
}
}
int Gcd(int a, int b)
{
if(b == 0)
return a;
if(gd[a][b])
return gd[a][b];
return gd[a][b] = Gcd(b, a % b);
}
ll cal(int d, int x)
{
ll ans = 0;
for(int i = 1; i <= d; i++)
if(Gcd(i, x) == 1)
ans += (ll) (d / i);
return ans;
}
int main()
{
Mobius();
int a, b, c;
ll ans = 0;
scanf("%d %d %d", &a, &b, &c);
for(int i = 1; i <= a; i++)
for(int j = 1; j <= min(b, c); j++)
if(Gcd(i, j) == 1)
ans = (ans % MOD + (ll) (a / i) * mob[j] * cal(b / j, i) * cal(c / j, i) % MOD) % MOD;
printf("%I64d\n", ans);
}
相關文章
- 莫比烏斯反演
- Codeforces 548E Mike and Foam (容斥+莫比烏斯反演)
- Hackerrank GCD Product(莫比烏斯反演)GC
- 莫比烏斯反演學習筆記筆記
- 比較典的莫比烏斯反演
- 狄利克雷卷積 & 莫比烏斯反演卷積
- HDU 4746 Mophues (莫比烏斯反演應用)
- ZOJ 3868 GCD Expectation (容斥+莫比烏斯反演)GC
- HDU 1695 GCD (容斥 + 莫比烏斯反演)GC
- POJ 3904 Sky Code (容斥+莫比烏斯反演)
- 狄利克雷卷積與莫比烏斯反演卷積
- BZOJ 2818 Gcd (莫比烏斯反演 或 尤拉函式)GC函式
- 演算法隨筆——數論之莫比烏斯反演演算法
- 洛谷 P2257 YY的GCD(莫比烏斯反演)GC
- HDU 5212 Code (容斥 莫比烏斯反演基礎題)
- CSU 1325 A very hard problem (莫比烏斯反演+分塊求和優化)優化
- SPOJ VLATTICE Visible Lattice Points (莫比烏斯反演基礎題)
- ZOJ 3435 Ideal Puzzle Bobble (莫比烏斯反演基礎題)Idea
- SPOJ PGCD - Primes in GCD Table (好題! 莫比烏斯反演+分塊求和優化)GC優化
- Codeforces466C Number of Ways
- BZOJ 3309 DZY Loves Math (莫比烏斯反演的應用 好題)
- Codeforces 1017 CThe Phone Number
- FZU 1969 && UVA 11426 GCD Extreme (尤拉函式 或 莫比烏斯反演)GCREM函式
- Codeforces Round #213 (Div. 2) A. Good NumberGo
- [Codeforces 1111E] Tree(虛樹+二項式反演)
- Motivation & Challenge
- CodeForces - 976A:Minimum Binary Number(水題)
- Codeforces Round #228 (Div. 2) A. Fox and Number GameGAM
- Codeforces 245H Queries for Number of Palindromes:區間dp
- BZOJ2839/LG10596 集合計數 題解(二項式反演+擴充套件尤拉定理)套件
- type challenge(easy 部分)
- python challenge 答案Python
- BZOJ 2301 [HAOI2011]Problem b (容斥+莫比烏斯反演+分塊優化 詳解)優化
- AMBF 之 surgical robotics challenge
- 矩陣樹定理 BEST 定理矩陣
- 盧卡斯定理(Lucas定理)
- 如何將全波形反演FWI與人工智慧AI的神經網路做對比?人工智慧AI神經網路
- 矩陣樹定理與BEST定理矩陣