[Codeforces 1111E] Tree(虛樹+二項式反演)
題目大意
給定一棵樹,有一些詢問。每次詢問給出個點和兩個數,表示讓原樹以為根,把這個點分成至多組,每組內不存在一個點是另一個點的祖先。求方案數膜1000000007.
。
題解
顯然先建虛樹,並且按照給定根重新遍歷虛樹。剛開始SB的我想了好久怎麼重新確定虛樹中誰是誰的祖先……後來才發現直接把加進去一起建虛樹就行了qaq。
然後,看資料範圍似乎是個的做法?想了一會兒樹形dp,感覺不太可行。那就估計是組合數學了。
先不考慮組與組之間無區別的問題(即兩組分別為{1},{2}和{2},{1}實際上是相同的情況),我們給每個組設定一個編號。遍歷虛樹,如果某個點向上有個祖先,那麼它可以選的編號有種,乘起來即可。
顯然這樣會重複,我們考慮去重。不妨令表示剛剛算出的答案,表示恰好分成個非空無區別組的方案數。那麼:
二項式反演即可得到:
於是我們可以在的時間內算出所有的,利用在的時間內算出所有的,直接求和就是答案。
#include <bits/stdc++.h>
namespace IOStream {
const int MAXR = 1 << 23;
char _READ_[MAXR], _PRINT_[MAXR];
int _READ_POS_, _PRINT_POS_, _READ_LEN_;
inline char readc() {
#ifndef ONLINE_JUDGE
return getchar();
#endif
if (!_READ_POS_) _READ_LEN_ = fread(_READ_, 1, MAXR, stdin);
char c = _READ_[_READ_POS_++];
if (_READ_POS_ == MAXR) _READ_POS_ = 0;
if (_READ_POS_ > _READ_LEN_) return 0;
return c;
}
template<typename T> inline void read(T &x) {
x = 0; register int flag = 1, c;
while (((c = readc()) < '0' || c > '9') && c != '-');
if (c == '-') flag = -1; else x = c - '0';
while ((c = readc()) >= '0' && c <= '9') x = x * 10 + c - '0';
x *= flag;
}
template<typename T1, typename ...T2> inline void read(T1 &a, T2 &...x) {
read(a), read(x...);
}
inline int reads(char *s) {
register int len = 0, c;
while (isspace(c = readc()) || !c);
s[len++] = c;
while (!isspace(c = readc()) && c) s[len++] = c;
s[len] = 0;
return len;
}
inline void ioflush() {
fwrite(_PRINT_, 1, _PRINT_POS_, stdout), _PRINT_POS_ = 0;
fflush(stdout);
}
inline void printc(char c) {
_PRINT_[_PRINT_POS_++] = c;
if (_PRINT_POS_ == MAXR) ioflush();
}
inline void prints(char *s) {
for (int i = 0; s[i]; i++) printc(s[i]);
}
template<typename T> inline void print(T x, char c = '\n') {
if (x < 0) printc('-'), x = -x;
if (x) {
static char sta[20];
register int tp = 0;
for (; x; x /= 10) sta[tp++] = x % 10 + '0';
while (tp > 0) printc(sta[--tp]);
} else printc('0');
printc(c);
}
template<typename T1, typename ...T2> inline void print(T1 x, T2... y) {
print(x, ' '), print(y...);
}
}
using namespace IOStream;
using namespace std;
typedef long long ll;
typedef pair<int, int> P;
#define cls(a) memset(a, 0, sizeof(a))
const int MAXN = 100005, MAXM = 200005, MOD = 1000000007;
struct Graph { int to, next; } gra[MAXM];
struct Edge { int to, val, next; } edge[MAXM];
int hd[MAXN], st[20][MAXM], beg[MAXN], dep[MAXN], sta[MAXN], ed[MAXN];
int lg[MAXM], head[MAXN], arr[MAXN], vis[MAXN], sz[MAXN], n, m, tot;
void addgra(int u, int v) {
gra[++tot] = (Graph) { v, hd[u] };
hd[u] = tot;
}
void addedge(int u, int v, int w) {
edge[++tot] = (Edge) { v, w, head[u] };
head[u] = tot;
edge[++tot] = (Edge) { u, w, head[v] };
head[v] = tot;
//printf("%d %d %d\n", u, v, w);
}
void dfs1(int u, int fa) {
dep[st[0][beg[u] = ++tot] = u] = dep[fa] + 1;
sz[u] = 1;
for (int i = hd[u]; i; i = gra[i].next) {
int v = gra[i].to;
if (v != fa) dfs1(v, st[0][++tot] = u), sz[u] += sz[v];
}
ed[u] = tot;
}
int get_min(int a, int b) { return dep[a] < dep[b] ? a : b; }
int get_lca(int a, int b) {
a = beg[a], b = beg[b];
if (a > b) swap(a, b);
int l = lg[b - a + 1];
return get_min(st[l][a], st[l][b - (1 << l) + 1]);
}
bool cmp(const int &a, const int &b) { return beg[a] < beg[b]; }
int q, r, mm;
ll C[305][305], f[305], fac[305], rev[305];
ll modpow(ll a, int b) {
ll res = 1;
for (; b; b >>= 1) {
if (b & 1) res = res * a % MOD;
a = a * a % MOD;
}
return res;
}
void dfs4(int u, int fa) {
for (int &i = head[u]; i; i = edge[i].next) {
int v = edge[i].to;
if (v != fa) dfs4(v, u);
}
}
void dfs3(int u, int fa, int d, ll &ff) {
for (int i = head[u]; i; i = edge[i].next) {
int v = edge[i].to;
if (v == fa) continue;
dfs3(v, u, d - vis[u], ff);
}
if (vis[u]) (ff *= d) %= MOD;
}
int main() {
C[0][0] = 1;
for (int i = fac[0] = 1; i <= 300; i++) {
fac[i] = fac[i - 1] * i % MOD;
C[i][0] = 1;
for (int j = 1; j <= i; j++)
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % MOD;
}
rev[300] = modpow(fac[300], MOD - 2);
for (int i = 300; i > 0; i--) rev[i - 1] = rev[i] * i % MOD;
read(n, m);
for (int i = 1; i < n; i++) {
int u, v; read(u, v);
addgra(u, v);
addgra(v, u);
}
dfs1(1, tot = 0);
for (int i = 2; i <= tot; i++) lg[i] = lg[i >> 1] + 1;
for (int i = 1; i < 20; i++)
for (int j = 1; j + (1 << i) - 1 <= tot; j++)
st[i][j] = get_min(st[i - 1][j], st[i - 1][j + (1 << i >> 1)]);
while (m--) {
int top = tot = 0, flag = 0; read(q, mm, r);
for (int i = 1; i <= q; i++) {
read(arr[i]), vis[hd[i] = arr[i]] = 1;
if (arr[i] == r) flag = 1;
}
if (!flag) arr[++q] = r;
sort(arr + 1, arr + 1 + q, cmp);
sta[++top] = 1;
for (int i = arr[1] == 1 ? 2 : 1; i <= q; i++) {
int l = get_lca(sta[top], arr[i]);
for (; top > 1 && dep[sta[top - 1]] > dep[l]; top--)
addedge(sta[top - 1], sta[top], dep[sta[top]] - dep[sta[top - 1]]);
if (dep[sta[top]] > dep[l]) addedge(l, sta[top], dep[sta[top]] - dep[l]), --top;
if (dep[sta[top]] < dep[l]) sta[++top] = l;
sta[++top] = arr[i];
}
for (; top > 1; top--) addedge(sta[top - 1], sta[top], dep[sta[top]] - dep[sta[top - 1]]);
ll res = 0;
for (int i = 1; i <= mm; i++) {
f[i] = 1;
dfs3(r, 0, i, f[i]);
ll sum = 0;
for (int j = 1; j <= i; j++) {
if ((i - j) & 1) (sum -= C[i][j] * f[j]) %= MOD;
else (sum += C[i][j] * f[j]) %= MOD;
}
(res += sum * rev[i]) %= MOD;
}
for (int i = 1; i <= q; i++) vis[arr[i]] = 0;
dfs4(r, 0);
print((res + MOD) % MOD);
}
ioflush();
return 0;
}
相關文章
- 二項式反演小記
- 二項式反演學習筆記筆記
- DHTML Tree 使用例項 (二)HTML
- HDU6035-Colorful Tree-虛樹思想
- 【Codeforces1404B】Tree tag | 樹上追擊、博弈、樹的直徑
- Amazing tree —— 二叉查詢樹
- Codeforces 461B. Appleman and Tree[樹形DP 方案數]APP
- POJ2255Tree Recovery(二叉樹)二叉樹
- Codeforces 461B Appleman and Tree:Tree dpAPP
- Maximum Depth of Binary Tree 二叉樹的深度二叉樹
- [CareerCup] 4.1 Balanced Binary Tree 平衡二叉樹二叉樹
- BZOJ2839/LG10596 集合計數 題解(二項式反演+擴充套件尤拉定理)套件
- dsu on tree (樹上啟發式合併) 詳解
- Echarts關於tree樹資料渲染圖例最新例項Echarts
- 二項式定理
- 二叉搜尋樹(Binary Search Tree)(Java實現)Java
- 多路查詢樹:B-tree/b+tree
- Codeforces 548E Mike and Foam (容斥+莫比烏斯反演)
- 257. Binary Tree Paths(列印二叉樹所有路徑)二叉樹
- Same Tree 比較兩個二叉樹是否完全相同二叉樹
- 【LeetCode 100_二叉樹_遍歷】Same TreeLeetCode二叉樹
- 『資料結構』樹(Tree)資料結構
- Codeforces Round #362 (Div. 2) C 模擬二叉樹二叉樹
- codeforces 9D How many trees? (組合二叉樹)二叉樹
- LeetCode 545. Boundary of Binary Tree 二叉樹邊界LeetCode二叉樹
- 二叉搜尋樹(Binary Search Tree )的定義及分析
- DHTML Tree 使用例項HTML
- 【2024-ZR-C Day 6】資料結構(4):樹(重、長)鏈剖分、虛樹、dsu on tree資料結構
- 二項式展開公式公式
- 二項式定理來源
- ZOJ Problem Set - 1944 Tree Recovery(二叉樹三種遍歷知二求三)二叉樹
- js資料結構--樹(tree)JS資料結構
- 抽象語法樹 Abstract syntax tree抽象語法樹
- 淺談線段樹(Segment Tree)
- [CareerCup] 4.8 Contain Tree 包含樹AI
- 平衡樹索引(b-tree index)索引Index
- 線段樹入門(Segment Tree)
- hdu 4836 The Query on the Tree(線段樹or樹狀陣列)陣列