矩陣類及其常規運算(加、減、乘、轉置、求逆、行列式、代數餘子式、伴隨矩陣)
寫在前面
本程式中矩陣類的定義為師長給予(兩個SetData函式除外),在此不作詳細說明。其中涉及的對新舊資料的處理、對函式的封裝與保護、對指標的運用及其他理念,由讀者自行體會。此外,本程式中對於矩陣外框列印所採用的對齊方法有很大的侷限性,其餘演算法亦極為粗糙簡陋,若讀者能夠指出不當之處,當不勝感激。
程式碼實現
#include <iostream>
#include <iomanip>
#include <cstring>
#include <cmath>
using namespace std;
#define ull unsigned long long
class Matrix
{
double* pData;
int rowCount;
int colCount;
public:
Matrix(int rows, int cols) :
pData(nullptr), rowCount(0), colCount(0)
{
CreateData(rows, cols);
ClearData();
}
Matrix(int rows, int cols, double value) :
pData(nullptr), rowCount(0), colCount(0)
{
CreateData(rows, cols);
ClearData(value);
}
Matrix(int rows, int cols, const double* initArr, int initArrSize) :
pData(nullptr), rowCount(0), colCount(0)
{
CreateData(rows, cols);
CopyDataFrom(initArr, initArrSize);
}
~Matrix()
{
if (pData) delete[]pData;
}
Matrix(const Matrix& m) :
pData(nullptr), rowCount(0), colCount(0)
{
CreateData(m.rowCount, m.colCount);
CopyDataFrom(m.pData, m.rowCount * m.colCount);
}
Matrix& operator =(const Matrix& m)
{
CreateData(m.rowCount, m.colCount);
CopyDataFrom(m.pData, m.rowCount * m.colCount);
return *this;
}
double GetData(int rowIndex, int colIndex) const
{
return pData[rowIndex * colCount + colIndex];
}
double* SetData() const
{
return pData;
}
private:
void CreateData(int rows, int cols)
{
if (rows <= 0) rows = 1;
if (cols <= 0) cols = 1;
double* pOldData = nullptr;
if (pData)
if (rowCount * colCount != rows * cols)
pOldData = pData;
pData = new double[rows * cols];
this->rowCount = rows;
this->colCount = cols;
}
void CopyDataFrom(const double* newData, int newDataSize, bool clearOther = true)
{
double* pTarget = pData;
const double* pSource = newData;
double* pTargetEnd1 = pData + rowCount * colCount;
double* pTargetEnd2 = pData + newDataSize;
double* pTargetEnd = (pTargetEnd1 < pTargetEnd2) ? pTargetEnd1 : pTargetEnd2;
while (pTarget < pTargetEnd)
*(pTarget++) = *(pSource++);
/* for (; pTarget < pTargetEnd; ++pTarget, ++pSource)
*pTarget = *pSource;
for (int i = 0; i < newDataSize && i < rowCount * colCount; ++i)
pData[i] = newData[i];*/ //?上方迴圈的另外兩種寫法。
if (clearOther)
while (pTarget < pTargetEnd1)
*pTarget++ = 0;
}
void ClearData(double value = 0)
{
double* pTarget = pData;
double* pTargetEnd = pData + rowCount * colCount;
while (pTarget < pTargetEnd)
*(pTarget++) = value;
}
int GetRowCount() const { return rowCount; }
int GetColCount() const { return colCount; }
friend ostream& operator << (ostream& out, const Matrix& m);
friend int GetRowCount(const Matrix& m);
friend int GetColCount(const Matrix& m);
friend double* SetData(Matrix& m, const int rowIndex, const int colIndex);
}; //矩陣類
int GetRowCount(const Matrix& m)
{
return m.rowCount;
}
int GetColCount(const Matrix& m)
{
return m.colCount;
}
//返回矩陣指向特定行列的指標
double* SetData(Matrix& m, const int rowIndex, const int colIndex)
{
double* p = m.pData;
p += rowIndex * m.colCount + colIndex;
return p;
}
//輸出流過載(使其能夠列印矩陣)?
ostream& operator << (ostream& out, const Matrix& m)
{
int x = 0, y = 0, i = 0;
ull blank = 0; ull numsize = 0;
double temp = 0, edge = 0;
blank = 9 * (ull)m.colCount - 1;
out << "┏" << setw(blank) << "┓" << endl;
for (y = 0; y < m.rowCount; ++y)
{
out << "┃";
for (x = 0; x < m.colCount; ++x)
{
temp = m.GetData(y, x); //儲存本次要列印的值
if (temp < 1e-10) temp = 0; //temp過小直接設為0
edge = fabs(temp - (long)temp); //判斷是否為整數
if (temp != 0 && edge < 1e-4) edge = 0; //不為整數,將edge設為0,將其當作整數
else if (edge >= 1e-4) edge = 1; //將其當作小數
numsize = (ull)log10(fabs(temp)) + 1;
if (temp < 0) numsize += 1;
if (fabs(temp) < 1) numsize = 0;
if (numsize == 0 && edge == 1) //處理小於1且帶小數的情況。
out << setprecision(5) << setw(8) << temp;
else if (numsize == 1)
{
if (edge == 1)
out << setprecision(5) << setw(8) << temp;
else
out << setw(5) << temp << setw(3) << "";
}
else
out << setw(5) << temp << setw(3) << "";
if (x == m.colCount - 1) out << "┃";
}
out << endl;
out << (y == m.rowCount - 1 ? "┗" : "");
if (y == m.rowCount - 1) out << setw(blank);
out << (y == m.rowCount - 1 ? "┛" : "");}
return out;
}
//矩陣轉置?
Matrix operator ~ (const Matrix& m)
{
Matrix mT(GetColCount(m), GetRowCount(m));
double* p = mT.SetData();
for (int row = 0; row < GetRowCount(mT); ++row)
{
for (int col = 0; col < GetColCount(mT); ++col)
*p++ = m.GetData(col, row);
}
return mT;
}
//矩陣乘法?
Matrix operator * (const Matrix& m1, const Matrix& m2)
{
Matrix mX(GetRowCount(m1), GetColCount(m2));
Matrix ErrormX(1, 1, 0);
if (GetColCount(m1) != GetRowCount(m2))
{
cout << "兩矩陣行列不對應,無法相乘。返回錯誤值:1階0矩陣。" << endl;
return ErrormX;
}
int t1 = GetColCount(m1), t2 = GetColCount(m2), t3 = GetRowCount(m1);
int i = 0, x = 0, y = 0;
double* pTarget = mX.SetData();
while (x < t3) //t3為m1的行數
{
while (y < t2) //t2為m2的列數
{
while (i < t1) //t1為m1的列數(也是m2的行數),對每一個y(即m2的每一列),迴圈t1次計算出mX當前位置的值,然後y+1
{
*pTarget += m1.GetData(x, i) * m2.GetData(i, y);
i++;
}
i = 0; y++; pTarget++;
}
y = 0; x++;
}
return mX;
}
//矩陣加法?
Matrix operator + (const Matrix& m1, const Matrix& m2)
{
Matrix mAdd(GetRowCount(m1), GetColCount(m1));
Matrix m_Error(1, 1, 0);
double* p = mAdd.SetData();
if (GetRowCount(m1) != GetRowCount(m2) ||
GetColCount(m1) != GetColCount(m2))
{
cout << "兩矩陣行列不完全相同,無法相加!返回錯誤值:1階0矩陣。";
return m_Error;
}
for (int row = 0; row < GetRowCount(m1); row++)
{
for (int col = 0; col < GetColCount(m1); col++)
*p++ = m1.GetData(row, col) + m2.GetData(row, col);
}
return mAdd;
}
//矩陣減法
Matrix operator - (const Matrix& m1, const Matrix& m2)
{
Matrix mMinus(GetRowCount(m1), GetColCount(m1));
Matrix m_Error(1, 1, 0);
double* p = mMinus.SetData();
if (GetRowCount(m1) != GetRowCount(m2) ||
GetColCount(m1) != GetColCount(m2))
{
cout << "兩矩陣行列不完全相同,無法相減!返回錯誤值:1階0矩陣。";
return m_Error;
}
for (int row = 0; row < GetRowCount(m1); row++)
{
for (int col = 0; col < GetColCount(m1); col++)
*p++ = m1.GetData(row, col) - m2.GetData(row, col);
}
return mMinus;
}
//交換函式,用於進行兩行交換
inline void swap(Matrix& mdet, int r1, int r2)
{
int t = GetColCount(mdet);
for (int i = 0; i < t; i++)
swap(*SetData(mdet, r1, i), *SetData(mdet, r2, i));
}
//乘積函式,用於對矩陣指定行實行數乘
inline void Matrix_Multiline(Matrix& m, double k, int R)
{
int C = GetColCount(m);
for (int i = 0; i < C; i++)
*SetData(m, R, i) *= k;
}
// 高斯消元求行列式
double fabs(Matrix& m)
{
Matrix mDen = m;
int row = GetRowCount(m), col = GetColCount(m);
if (row != col) //判斷是否能求行列式。
{
cout << "該矩陣不是方陣,無法求行列式. 返回錯誤值0." << endl;
cout << "◢";
return 0;
}
if (row == 2)
return m.GetData(0, 0) * m.GetData(1, 1) - m.GetData(0, 1) * m.GetData(1, 0);
/*
引數說明:
1. k : 儲存最終計算結果。
2. temp : 當目前迴圈至t列時,儲存t+1行位於主對角線下方的數值。
3. i,j : 控制迴圈需要。
4. count: 判斷首列是否全為0.
5. t : 控制迴圈沿對角線方向下降。
*/
double k = 1, temp = 0; int i = 0, j = 0, count = 0, t = 0;
for (i = 0; i < row; i++)
{
if (mDen.GetData(i, 0) == 0)
count += 1;
}
if (count == row) return 0;
for (t = 0; t < col; t++)//從首列開始,將矩陣變為上三角。沿對角線方向下降,下文將該列主對角線上的元素稱為該列首項。
{
// 將該列首項變為1. ?
if (mDen.GetData(t, t) == 1) {} //若該列首項為1,不做任何事。
else
{
for (i = t; i < row; i++) //從該列首項開始。
{
if (mDen.GetData(i, t) == 1) //如果該列i行為1,將其與該列首項所在行對換,跳出行迴圈
{
if (i != t)
{
swap(mDen, i, t); //執行對換。
k = (i == t ? k : -k); //行對換,符號改變。
}
goto Deal; //跳轉至處理函式。
}
else
{
if (mDen.GetData(i, t) == 0) //遇到0,進入下一行
continue;
else //如果該列i行不為0且不為1,用k儲存該行首項的值,並將該行首項變為1,之後將該行與該列首項所在行對換。
{
temp = mDen.GetData(i, t); //儲存該行首項的值。
k *= temp;
//cout << "k = " << k << endl << endl;
Matrix_Multiline(mDen, (1 / temp), i); //將該行首項變為1.
if (i != t)
{
swap(mDen, i, t); //交換該行與該列首項所在行。
k = -k; //改變符號。
}
goto Deal; //跳轉至處理函式。
}
}
}
if (t == 0 && count == row) return 0; // 首列全為0,返回0。
}
Deal: //將該列除首項外所有元素變為0.?
for (i = t + 1; i < row; i++) //從該列首項所在下一行開始。
{
temp = mDen.GetData(i, t); //儲存該行首項的值。
if (temp != 0) //如果不為0
{
for (j = t; j < col; j++) //從該行主對角線下項開始,每一項都減去將該列首項(即1)所在的行乘上temp。將該行首項變為0.
{
//cout << "第" << i + 1 << "行" << j + 1 << "列的元素為" << mDen.GetData(i, j) << endl; ?除錯用語句
*SetData(mDen, i, j) -= temp * *SetData(mDen, t, j);
//cout << "第" << i + 1 << "行" << j + 1 << "列的元素為" << mDen.GetData(i, j) << endl; ?除錯用語句
//cout << "k = " << k << endl; ?除錯用語句
}
}
}
}
return k;
}
// 提取餘子式對應矩陣
Matrix alogcom(Matrix& m, const int rowIndex, const int colIndex)
{
int row = GetRowCount(m), col = GetColCount(m);
int x = 0, y = 0, i = 0, j = 0;
Matrix mC(row - 1, col - 1);
for (y = 0; y < row; y++)
{
for (x = 0; x < col; x++)
{
if (y != rowIndex && x != colIndex)
{
*SetData(mC, i, j++) = *SetData(m, y, x);
if (j == row - 1)
{
j = 0; i++;
break;
}
}
}
}
//cout << mC << endl << endl; ?除錯用語句
return mC;
}
// 計算伴隨矩陣
Matrix adjoint(Matrix& m)
{
int row = GetRowCount(m), col = GetColCount(m);
short sign = -1;
Matrix mCom(row, col);
Matrix mTemp(row, col);
for (int y = 0; y < row; y++)
{
for (int x = 0; x < col; x++)
{
mTemp = alogcom(m, x, y);
//cout << "A" << x + 1 << y + 1 << " = " << fabs(mTemp) << endl; ?除錯用語句
*SetData(mCom, y, x) = pow(sign, x + y + 2) * fabs(mTemp);
//cout << mCom << endl; ?除錯用語句
}
}
//cout << mCom << endl; ?除錯用語句
return mCom;
}
// 求逆矩陣
Matrix operator !(Matrix& m)
{
int row = GetRowCount(m), col = GetColCount(m);
Matrix m_(row, col);
Matrix mCom = adjoint(m);
Matrix Errorm(1, 1, 0);
double Den = fabs(m);
//cout << Den << endl; ?除錯用語句
if (row != col || Den == 0)
{
cout << "該矩陣不可逆。返回錯誤值:1階0矩陣。" << endl;
return Errorm;
}
for (int y = 0; y < row; y++)
{
for (int x = 0; x < col; x++)
{
*SetData(m_, y, x) = mCom.GetData(y, x) / Den;
//cout << m_ << endl; ?除錯用語句
}
}
return m_;
}
int main()
{
double arr[15] = { 1, 2, 3, 4, 5, 6, 1, 3, 4, 2, 3, 1, 5, 0.1, -0.5 };
double arr_[9] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };
Matrix m1(3, 3, arr, 9);
Matrix m2 = ~m1;
Matrix m3 = m1 * ~m1;
Matrix m4(3, 3, arr_, 9);
Matrix m5 = !m1;
Matrix m6 = m1 * !m1;
Matrix m7 = adjoint(m1);
cout << "m1 = " << endl << m1 << endl << endl;
cout << "m1^T(轉置) = " << endl << m2 << endl << endl;
cout << "m1 * m1^T = " << endl << m3 << endl << endl;
cout << "m1^*(伴隨) = " << endl << m7 << endl << endl;
cout << "m1 * m1^* = " << endl << m1 * m7 << endl << endl;
cout << "|m1|(行列式) = " << fabs(m1) << endl << endl;
cout << "m1^-1(逆矩陣) = " << endl << m5 << endl << endl;
cout << "m1 * m1^-1 = " << endl << m6 << endl << endl;
cout << "m4 = " << endl << m4 << endl << endl;
cout << "|m4| = " << fabs(m4) << endl << endl;
cout << "m1 + m4 = " << endl << m1 + m4 << endl << endl;
cout << "m1 - m4 = " << endl << m1 - m4 << endl << endl;
system("pause");
return 0;
}
執行結果
寫在後面
矩陣的其他運算,等高等代數學明白後會補上?
相關文章
- 求任意矩陣的伴隨矩陣矩陣
- 伴隨矩陣和逆矩陣的關係證明矩陣
- 人工智慧之機器學習線代基礎——行列式、矩陣的 逆(inverse)、伴隨矩陣人工智慧機器學習矩陣
- 矩陣求逆矩陣
- 矩陣轉置矩陣
- 奇異矩陣,非奇異矩陣,偽逆矩陣矩陣
- 資料結構:陣列,稀疏矩陣,矩陣的壓縮。應用:矩陣的轉置,矩陣相乘資料結構陣列矩陣
- 【矩陣求導】關於點乘 (哈達瑪積)的矩陣求導矩陣求導點乘
- numpy.linalg包函式用法集錦(求逆矩陣,求矩陣行列式的值,求特徵值和特徵向量,解方程組)函式矩陣特徵
- 矩陣求導公式【轉】矩陣求導公式
- 第三章,矩陣,03-矩陣與行列式矩陣
- 隨機矩陣隨機矩陣
- 高等代數1 矩陣矩陣
- 線性代數--矩陣矩陣
- 置換矩陣矩陣
- 矩陣置0矩陣
- 矩陣求導矩陣求導
- Numpy中的矩陣運算矩陣
- 機器學習中的矩陣向量求導(五) 矩陣對矩陣的求導機器學習矩陣求導
- NYOJ 1409 快速計算【矩陣連乘】矩陣
- 矩陣計算矩陣
- pytorch基礎七(矩陣運算)PyTorch矩陣
- 矩陣求導(二)矩陣求導
- 矩陣求導(一)矩陣求導
- 三維旋轉矩陣 左乘和右乘分析矩陣
- JavaScript加減乘數運算JavaScript
- 3D數學基礎:矩陣的行列式3D矩陣
- 矩陣:如何使用矩陣操作進行 PageRank 計算?矩陣
- 幸運數(dp+矩陣加速)矩陣
- 跟我一起學《深度學習》 第二章 線性代數(2.3 單位矩陣和逆矩陣)深度學習矩陣
- 線性代數11.三種初等矩陣及其性質矩陣
- VIVADO vhdl verilog 實現矩陣運算矩陣
- verilog實現矩陣卷積運算矩陣卷積
- 矩陣運算與相抵標準型矩陣
- 巨大的矩陣(矩陣加速)矩陣
- 鄰接矩陣、度矩陣矩陣
- 矩陣連乘(動態規劃演算法)矩陣動態規劃演算法
- 矩陣連乘問題 Python 動態規劃矩陣Python動態規劃