第一次用博

西唄發表於2018-08-06
        with tf.Graph().as_default():
            self.images_placeholder =tf.placeholder(tf.float32, [None, self.image_size, self.image_size, 3], name='input')
            self.phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
            # Build the inference graph
            prelogits, _ = network.inference(self.images_placeholder, 1.0,
                                             phase_train=self.phase_train_placeholder, bottleneck_layer_size=512,
                                             weight_decay=0.0)
            model_exp = os.path.expanduser(facenet_model_checkpoint)
            self.embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')
            #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
            gpu_options = tf.GPUOptions(allow_growth=True)
            self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
            meta_file, ckpt_file = facenet.get_model_filenames(model_exp)
            saver = tf.train.Saver(tf.trainable_variables())
            print('Restoring pretrained model: %s' %facenet_model_checkpoint)
            saver.restore(self.sess, os.path.join(model_exp, ckpt_file))

 

相關文章