直男福利!手把手教你做一隻口紅色號識別器,秒變李佳琦
來自Github的口紅色號宇宙
https://github.com/Ovilia/lipstick
先用番茄做個實驗?
提取這張純色圖片的RGB值在技術上是可行的,getcolor.py程式碼如下:
import colorsys import PIL.Image as Image def get_dominant_color(image): max_score = 0.0001 dominant_color = None for count,(r,g,b) in image.getcolors(image.size[0]*image.size[1]): # 轉為HSV標準 saturation = colorsys.rgb_to_hsv(r/255.0, g/255.0, b/255.0)[1] y = min(abs(r*2104+g*4130+b*802+4096+131072)>>13,235) y = (y-16.0)/(235-16) #忽略高亮色 if y > 0.9: continue score = (saturation+0.1)*count if score > max_score: max_score = score dominant_color = (r,g,b) return dominant_color
import os import getcolor from os.path import join as pjoin from scipy import misc def load_color(color_dir,list): count = 0 for dir in os.listdir(color_dir): img_dir = pjoin(color_dir, dir) image = getcolor.Image.open(img_dir) image = image.convert('RGB') get=getcolor.get_dominant_color(image) list.append(get) count = count+1 #print(person_dir) #print(count) return count def Mean_color(count,list): Mean_R=Mean_G=Mean_B=0 for i in range(count): tuple=list[i] Mean_R+=tuple[0] Mean_G+=tuple[1] Mean_B+=tuple[2] MeanC=((int)(Mean_R/count),(int)(Mean_G/count),(int)(Mean_B/count)) return Me
當然是口紅的資料,文摘菌這兒用到了5個品牌,分別是聖羅蘭、香奈兒可可小姐、迪奧、美寶蓮、紀梵希,共17個系列,271個口紅色號,資料集是一個巢狀的字典資料結構,存為json串的形式,裡面記錄了每個口紅品牌系列下不同口紅色號的顏色id、名稱、和16進位制顏色值,lipstick.json部分資料集展示如下:
{"brands":[{"name":"聖羅蘭","series": [{"name":"瑩亮純魅脣膏","lipsticks": [{"color":"#D62352","id":"49","name":"撩騷"}, {"color":"#DC4B41","id":"14","name":"一見傾心"}, {"color":"#B22146","id":"05","name":"浮生若夢"},
資料集中儲存的RGB顏色是16進位制的字串形式,需要將其轉換成RGB值,比較兩個顏色相近與否,實際上是比較RGB三個分量維度上的誤差,最小的口紅輸出對應的品牌、系列、色號和id,程式碼如下:
import json import getcolor import numpy as np import lipcolor #filename = 'temp.txt' ##write the temp data to file## def WtoFile(filename,RGB_temp): num=len(RGB_temp) with open(filename,'w') as f: for i in range(num): s = str(RGB_temp[i]).replace('[','').replace(']','') f.write(s) f.write("\n") #operate the data # ##save the brand&series&color id&color name to sum_list## ##covert the color #D62352 to RGB_array## ##caculate the RGB difference to RGB_temp and write the value to file## def data_operate(): with open('lipstick.json', 'r', encoding='utf-8') as f: ret_dic = json.load(f) #print(ret_dic['brands']) #print(type(ret_dic)) # <class 'dict'> #print(ret_dic['brands'][0]['name']) b_num=len(ret_dic['brands']) #print(b_num)#brands number s_list=[] #series brands# for i in range(len(ret_dic['brands'])): s_num=len(ret_dic['brands'][i]['series']) s_list.append(s_num) #print("{0} has {1} series".format((ret_dic['brands'][i]['name']),(s_list[i]))) #the lipstick color of every brands every series# #the first loop calculate the total color numbers sum=0 for b1 in range(b_num): for s1 in range(s_list[b1]): brand_name=ret_dic['brands'][b1]['name'] lip_name=ret_dic['brands'][b1]['series'][s1]['name'] color_num=len(ret_dic['brands'][b1]['series'][s1]['lipsticks']) sum+=color_num#calculate the total color numbers #the second loop save the message to a list# sum_list=np.zeros((sum,4), dtype=(str,8)) value_array=np.zeros((sum,6), dtype=int) i=0 for b2 in range(b_num): for s2 in range(s_list[b2]): brand_name=ret_dic['brands'][b2]['name'] #print(type(brand_name)) lip_name=ret_dic['brands'][b2]['series'][s2]['name'] color_num=len(ret_dic['brands'][b2]['series'][s2]['lipsticks']) for c in range(color_num): color_value=ret_dic['brands'][b2]['series'][s2]['lipsticks'][c]['color'] color_name=ret_dic['brands'][b2]['series'][s2]['lipsticks'][c]['name'] color_id=ret_dic['brands'][b2]['series'][s2]['lipsticks'][c]['id'] #print("{0} series {1} has {2} colors,color {3}:{4}".format(brand_name,lip_name,color_num,c+1,color_name)) sum_list[i][0]=brand_name sum_list[i][1]=lip_name sum_list[i][2]=color_id sum_list[i][3]=color_name #value_array[i]=value_array[i][1] #convert "#D62352" to [13 6 2 3 5 2]# for l in range(6): temp=color_value[l+1] if(temp>='A'and temp<='F'): temp1=ord(temp)-ord('A')+10 else: temp1=ord(temp)-ord('0') value_array[i][l]=temp1 i+=1 #the third loop covert value_array to RGB_array# RGB_array=np.zeros((sum,3), dtype=int) for i in range(sum): RGB_array[i][0]=value_array[i][0]*16+value_array[i][1] RGB_array[i][1]=value_array[i][2]*16+value_array[i][3] RGB_array[i][2]=value_array[i][4]*16+value_array[i][5] #calculate the similar and save to RGB_temp #RGB_temp=np.zeros((sum,1), dtype=int) RGB_temp=np.zeros((sum,1), dtype=float) for i in range(sum): R=RGB_array[i][0] G=RGB_array[i][1] B=RGB_array[i][2] RGB_temp[i]=abs(get[0]-R)+abs(get[1]*3/4-G)+abs(get[2]-B) RGB_temp.tolist();#covert array to list #print(RGB_temp) filename="temp.txt" WtoFile(filename,RGB_temp) #sort the RGB_temp# result=sorted(range(len(RGB_temp)), key=lambda k: RGB_temp[k]) #print(result) #output the three max prob of the lipsticks# print("The first three possible lipstick brand and color id&name are as follows:") for i in range(3): idex=result[i] print(sum_list[idex]) print("The first three possible lipstick brand RGB value are as follows:") for i in range(3): idex=result[i] R=RGB_array[idex][0] G=RGB_array[idex][1] B=RGB_array[idex][2] tuple=(R,G,B) print(tuple) if __name__ == '__main__': #image = getcolor.Image.open(inputpath) #image = image.convert('RGB') #get=getcolor.get_dominant_color(image)#tuple #get=(231, 213, 211) list=[] color_dir="output" count=lipcolor.load_color(color_dir,list) get=lipcolor.Mean_color(count,list) print("the extracted RGB value of the color is {0}".format(get)) #operate the data# data_operat
提取到的番茄顏色:
'迪奧' '烈豔藍金脣膏' '080' '微笑正紅’的顏色:
'聖羅蘭' '純口紅' '56' '橙紅織錦'的顏色:
'紀梵希' '高定香榭天鵝絨脣' '325' '聖水紅'的顏色:
文摘菌已經眼花繚亂,三個顏色……有區別嗎?!以後不如準備統一叫它們,番茄色!
不過,這也正說明了,剛剛的提取&對比方法可行!
擷取到的嘴脣區域如下:
聖羅蘭官網#842C71口紅
人臉識別和擷取嘴脣區域的程式碼如下:
import numpy as np import cv2 import dlib from PIL import Image def crop(source,pos): x1=pos[2][0] y1=pos[2][1] x2=pos[1][0] y2=pos[1][1] d=abs(x2-x1) region = source[(int)(y1-d*0.75):y2,x1:x2] # save the image cv2.imwrite("output/Mouth1.jpg", region) x1=pos[1][0] y1=pos[1][1] x2=pos[0][0] y2=pos[0][1] d=abs(x1-x2) region = source[y1-d:y2,x1:x2] # save the image cv2.imwrite("output/Mouth2.jpg", region) def detect_mouth(img,pos): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.equalizeHist(gray) detector = dlib.get_frontal_face_detector() #use the predictor predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') dets = detector(img, 1) print("Number of faces detected: {}".format(len(dets))) for a in dets: cv2.rectangle(img,(a.left(),a.top()),(a.right(),a.bottom()),(255,0,0)) #point_list=[]#save the mouth point to point_list[]# #Extract 68 feature points of the face and crop the lip image# for index, face in enumerate(dets): print('face {}; left {}; top {}; right {}; bottom {}'.format(index, face.left(), face.top(), face.right(), face.bottom())) shape = predictor(gray, face) for i, pt in enumerate(shape.parts()): #print('Part {}: {}'.format(i, pt)) #print(i) pt_pos = (pt.x, pt.y) if i>=48 and i<=67: cv2.circle(img, pt_pos, 2, (255, 0, 0), 1) if i>=56 and i<=58: #print(pt_pos) pos[i-56][0]=pt.x pos[i-56][1]=pt.y #cv2.circle(img, pt_pos, 2, (255, 0, 0), 1) return img if __name__ == "__main__": img = cv2.imread("test3.png") #copy the input image for the later crop# img_clone = np.copy(img) cv2.imwrite("input/source.jpg",img_clone) #save the lip position to pos array# pos=np.zeros((3,2), dtype=int) result=detect_mouth(img,pos) cv2.imwrite("input/source2.jpg",result) #crop the lip areas# source = cv2.imread("input/source.jpg") crop(source,pos) # show the result cv2.imshow('FaceDetect',result) cv2.waitKey(0) cv2.destroyAllWindow
誤差分析
嘴脣區域擷取不可避免會擷取到皮膚中的一部分顏色,雖然演算法已經將那種可能降到最低; 顏色提取上,雖然擷取多個嘴脣圖片求平均值,但是本身的提取演算法還是和實際值稍有偏差; RGB顏色相似度比對的演算法也不夠精確; 最最重要的是,照片必須是原圖,而且光線要自然,加了濾鏡的圖是怎麼也不可能識別出來的。
文末福利:實時人像口紅色號預測
#coding=utf8 import cv2 import time print('Press Esc to exit') imgWindow = cv2.namedWindow('FaceDetect', cv2.WINDOW_NORMAL) import sys import os import dlib import glob import numpy from skimage import io def detect_face(): capInput = cv2.VideoCapture(0) #nextCaptureTime = time.time() faces = [] feas = [] if not capInput.isOpened(): print('Capture failed because of camera') while 1: ret, img = capInput.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.equalizeHist(gray) time=0 eTime = time.time() + 0.1 detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') dets = detector(gray, 1) print("Number of faces detected: {}".format(len(dets))) for a in dets: cv2.rectangle(img,(a.left(),a.top()),(a.right(),a.bottom()),(255,0,0)) for index, face in enumerate(dets): print('face {}; left {}; top {}; right {}; bottom {}'.format(index, face.left(), face.top(), face.right(), face.bottom())) shape = predictor(gray, face) for i, pt in enumerate(shape.parts()): #print('Part {}: {}'.format(i, pt)) pt_pos = (pt.x, pt.y) cv2.circle(img, pt_pos, 2, (255, 0, 0), 1) cv2.imshow('FaceDetect',img) if cv2.waitKey(1) & 0xFF == 27: break capInput.release() cv2.destroyAllWindows() if __name__ == "__main__": detect_face()
好啦,佳期如夢,雙星良夜,在這個充滿愛意的日子裡,定位好女神常用的口紅色號,和那個她來場華麗的邂逅吧!
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/31562039/viewspace-2652990/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 李佳琦和AIAI
- AI再造一個“李佳琦”,難嘛?AI
- 李佳琦助理單飛背後:美ONE求變
- netty系列之:小白福利!手把手教你做一個簡單的代理伺服器Netty伺服器
- 李佳琦直播再翻車是怎麼回事?李佳琦直播再翻車引網友熱議
- 雙十一,不僅缺李佳琦,還缺一個電商RPA機器人機器人
- 複製“李佳琦”的N道技術題
- Tensorflow(1)IT男識別玫瑰
- “假聲音”也來了,手把手教你造一隻柯南的蝴蝶結變聲器
- 手把手教你做一個快取工具快取
- JAVA-識別符號、變數、資料型別Java符號變數資料型別
- java:識別符號 關鍵字 變數Java符號變數
- 手把手教你做測開
- 河道船隻識別監測系統
- 船隻監測識別攝像機
- 手把手教你做一個超寫實爆炸特效特效
- 破解“衝動消費”難題,“李佳琦們”掀起618“反效率”之風
- Halcon顏色識別
- 一個理科直男如何看《魷魚遊戲》遊戲
- SCSS &父選擇器識別符號CSS符號
- OpenCV識別指定顏色(黑、灰、白、紅、橙、黃、綠、青、藍、紫)OpenCV
- 美ONE回應李佳琦補稅17億傳聞:不實訊息DVD
- <Python>識別符號、變數的定義與使用Python符號變數
- 李佳琦翻車一週後,網際網路打工人終於敢誇誇努力生活的自己
- 識別符號符號
- AI殺入影視圈:演算法再造李佳琦,中戲開招AI博士AI演算法
- 電商直播風暴來了,AI虛擬偶像徹底革命李佳琦、薇婭?AI
- 手把手教你做一個自己的chrome擴充套件程式Chrome套件
- URI(統一資源識別符號)符號
- 出料口堵塞識別系統
- 手把手教你做遊戲玩法開發遊戲
- 人人直播帶貨的時代,推薦模型為什麼比不過李佳琦們?模型
- 蘋果企業簽名:李佳琦發文:做人好難,做公眾人物更難蘋果
- 車架號識別
- js如何生成唯一識別符號UUIDJS符號UI
- 徵集口號
- 手把手教程|構建無伺服器通用文字識別功能伺服器
- jQuery雙色器隨機選號jQuery隨機