abc360_G Suitable Edit for LIS 題解

Athanasy發表於2024-06-30

題目連結:Atcoder 或者 洛谷

來講講純降智做法,不需要任何智商的做法,順帶整活:

對於一個 \(LIS\) 可以拆成 \(preLIS+sufLIS\),而我們現在至多可以修改一個點,那麼如果 \(preLIS\) 的末尾元素為 \(x\)\(sufLIS\) 的末尾元素為 \(y\),那麼如果有 \(y-x\ge 2\),那麼我們可以至少找到一個元素 \(v\) 使得 \(x<v<y\),那麼如果 \(preLIS\)\(sufLIS\) 中有空位,我們就可以任取一個一個元素變為 \(v\) 從而得到更長的 \(LIS\),在原來的基礎上 \(+1\)

這啟發我們預處理出 \(l[i]\)\(i\) 結尾的 \(LIS\)\(r[i]\)\(i\) 開始的 \(LIS\)

那麼我們隨便列舉一個,比如列舉 \(r[i]\),然後 \(1 \sim i-2\)\(l[i]\) 都是可選的,因為我們至少需要保留一個空位 \(i-1\) 使得至少有一個運算元可以用來修改為 \(v\),而顯然的是,我們只需要找到 \(\le a[i]-2\) 的最大 \(l[i]\) 就可以和 \(r[i]\) 以及中間這個數改為 \(v\) 拼成 \(l_{max}+r[i]+1\) 了。

現在考慮預處理,顯然關於值域的樹狀陣列就行了,不想離散化?那就整活用雜湊表維護軸,這樣一來就可以實現動態開點樹狀陣列了。

考慮查詢時,每次都只需要 \(1 \sim i-2\) 處的 \(l[i]\) 進入樹狀陣列,而 \(i\) 是從大到小列舉就行了。那麼我們可以使用可撤銷代替刪除,因為我們的增加為:

加入 \((a[i],l[i])\) 維護關於 \(a[i]\) 的值域最大值,最大值顯然是無法被刪除的,但可以用撤銷代替。

所以我們將 \(1 \sim n\) 的資訊依次加入到樹狀陣列當中,並且用一個棧維護修改的資訊,每次刪除就可以用撤銷代替了。

參照程式碼
#include <bits/stdc++.h>

// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")

#define isPbdsFile

#ifdef isPbdsFile

#include <bits/extc++.h>

#else

#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>

#endif

using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用於Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};

template <typename T>
int disc(T* a, int n)
{
    return unique(a + 1, a + n + 1) - (a + 1);
}

template <typename T>
T lowBit(T x)
{
    return x & -x;
}

template <typename T>
T Rand(T l, T r)
{
    static mt19937 Rand(time(nullptr));
    uniform_int_distribution<T> dis(l, r);
    return dis(Rand);
}

template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
    return (a % b + b) % b;
}

template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
    a %= c;
    T1 ans = 1;
    for (; b; b >>= 1, (a *= a) %= c) if (b & 1) (ans *= a) %= c;
    return modt(ans, c);
}

template <typename T>
void read(T& x)
{
    x = 0;
    T sign = 1;
    char ch = getchar();
    while (!isdigit(ch))
    {
        if (ch == '-') sign = -1;
        ch = getchar();
    }
    while (isdigit(ch))
    {
        x = (x << 3) + (x << 1) + (ch ^ 48);
        ch = getchar();
    }
    x *= sign;
}

template <typename T, typename... U>
void read(T& x, U&... y)
{
    read(x);
    read(y...);
}

template <typename T>
void write(T x)
{
    if (typeid(x) == typeid(char)) return;
    if (x < 0) x = -x, putchar('-');
    if (x > 9) write(x / 10);
    putchar(x % 10 ^ 48);
}

template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
    write(x), putchar(c);
    write(c, y...);
}


template <typename T11, typename T22, typename T33>
struct T3
{
    T11 one;
    T22 tow;
    T33 three;

    bool operator<(const T3 other) const
    {
        if (one == other.one)
        {
            if (tow == other.tow) return three < other.three;
            return tow < other.tow;
        }
        return one < other.one;
    }

    T3()
    {
        one = tow = three = 0;
    }

    T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
    {
    }
};

template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
    if (x < y) x = y;
}

template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
    if (x > y) x = y;
}

struct Hash
{
    static uint64_t splitmix64(uint64_t x)
    {
        x += 0x9e3779b97f4a7c15;
        x = (x ^ x >> 30) * 0xbf58476d1ce4e5b9;
        x = (x ^ x >> 27) * 0x94d049bb133111eb;
        return x ^ x >> 31;
    }

    static size_t get(const uint64_t x)
    {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }

    template <typename T>
    size_t operator()(T x) const
    {
        return get(std::hash<T>()(x));
    }

    template <typename F, typename S>
    size_t operator()(pair<F, S> p) const
    {
        return get(std::hash<F>()(p.first)) ^ std::hash<S>()(p.second);
    }
};

constexpr int N = 2e5 + 10;
constexpr int MX = INT_MAX;
int l[N], r[N];
int n, a[N];
int ans;
gp_hash_table<int, int, Hash> bit;
stack<pii> back;
int cnt[N];

inline void add(ll x, const int v, const bool isBack = false)
{
    while (x <= MX)
    {
        if (isBack) back.emplace(x, bit[x]);
        uMax(bit[x], v), x += lowBit(x);
    }
}

inline int query(int x)
{
    int ans = 0;
    while (x)
    {
        if (bit.find(x) != bit.end()) uMax(ans, bit[x]);
        x -= lowBit(x);
    }
    return ans;
}

inline void solve()
{
    cin >> n;
    forn(i, 1, n) cin >> a[i];
    forn(i, 1, n)
    {
        const int mx = query(a[i] - 1);
        l[i] = mx + 1;
        add(a[i], l[i]);
    }
    bit.clear();
    forv(i, n, 1)
    {
        const int mx = query(MX - a[i] - 1);
        r[i] = mx + 1;
        add(MX - a[i], r[i]);
    }
    forn(i, 1, n)
    {
        cnt[i] = back.size();
        add(a[i], l[i], true);
    }
    forv(i, n, 1)
    {
        uMax(ans, l[i] + (i + 1 <= n));
        uMax(ans, r[i] + (i - 1 >= 1));
        if (i > 2)
        {
            while (back.size() > cnt[i - 1])
            {
                const auto [x,val] = back.top();
                bit[x] = val;
                back.pop();
            }
            const int mx = query(a[i] - 2);
            uMax(ans, mx + r[i] + 1);
        }
    }
    cout << ans;
}

signed int main()
{
    // MyFile
    Spider
    //------------------------------------------------------
    // clock_t start = clock();
    int test = 1;
    //    read(test);
    // cin >> test;
    forn(i, 1, test) solve();
    //    while (cin >> n, n)solve();
    //    while (cin >> test)solve();
    // clock_t end = clock();
    // cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}

\[時間複雜度:\ O(n\log{V}) \]

相關文章