神秘題。
思路
\[\begin{aligned}
RSS&=\sum_{i=1}^n(f(d_i)-v_i)^2\\
&=\sum_{i=1}^n(ad_i+b-v_i)^2\\
&=\sum_{i=1}^nv^2+((-2ad_i)-2b)v+a^2d_i^2+2abd_i+b^2\\
\end{aligned}\]
設:
\[\begin{aligned}
S&=\sum_{i=1}^n d_i^2\\
T&=\sum_{i=1}^n d_i\\
U&=\sum_{i=1}^n d_iv_i\\
V&=\sum_{i=1}^n v_i\\
W&=\sum_{i=1}^n v_i^2\\
\end{aligned}\]
所以:
\[\begin{aligned}
RSS&=\sum_{i=1}^nv^2+((-2ad_i)-2b)v+a^2d_i^2+2abd_i+b^2\\
&=a^2S+2abT-2aU-2bV+nb^2+W
\end{aligned}\]
算這玩意的最值:
\[\begin{aligned}
nb^2-2bV+2abT&=nb^2+(2aT-2V)b\\
&\ge -\frac{V^2-2TVa+T^2a^2}{n}
\end{aligned}\]
那麼:
\[\begin{aligned}
RSS&=a^2S-2aU-\frac{V^2-2TVa+T^2a^2}{n}+W\\
&=(S-\frac{T^2}{n})a^2+(\frac{2TV}{n}-2U)a-\frac{V^2}{n}+W\\
&\ge \frac{(SW-U^2)n-T^2W-SV^2+2TUV}{Sn-T^2}
\end{aligned}\]
發現 \(S,T\) 是定值。
我們只需要算 \(W,U^2,V^2,UV\) 的期望即可。
這個可以簡單 dp。
Code
/*
! Though life is hard, I want it to be boiling.
! Created: 2024/05/03 19:51:38
*/
#include <bits/stdc++.h>
using namespace std;
#define x first
#define y second
#define int long long
#define mp(x, y) make_pair(x, y)
#define eb(...) emplace_back(__VA_ARGS__)
#define fro(i, x, y) for (int i = (x); i <= (y); i++)
#define pre(i, x, y) for (int i = (x); i >= (y); i--)
inline void JYFILE19();
typedef pair<int, int> PII;
bool ST;
const int N = 1e6 + 10;
const int mod = 998244353;
int n, m, S, T, ans, num, d[N], v[N], l[N], r[N], f[N][7];
inline int power(int x, int y) {
int res = 1;
while (y) {
if (y & 1) res = res * x % mod;
x = x * x % mod, y /= 2;
}
return res;
}
inline int ask1(int x) {
return x * (x + 1) / 2 % mod;
}
inline int ask1(int l, int r) {
return (ask1(r) - ask1(l - 1) + mod) % mod;
}
inline int ask2(int x) {
return (__int128)x * (x + 1) * (2 * x + 1) / 6 % mod;
}
inline int ask2(int l, int r) {
return (ask2(r) - ask2(l - 1) + mod) % mod;
}
signed main() {
JYFILE19();
cin >> n, num = 1;
fro(i, 1, n) cin >> d[i] >> l[i] >> r[i];
fro(i, 1, n) (S += d[i] * d[i]) %= mod;
fro(i, 1, n) (T += d[i]) %= mod;
f[0][0] = 1;
fro(i, 1, n) {
int A1 = ask1(l[i], r[i]);
int A2 = ask2(l[i], r[i]);
f[i][0] = f[i - 1][0] * (r[i] - l[i] + 1) % mod;
f[i][1] = (f[i - 1][1] * (r[i] - l[i] + 1) + A2 * f[i - 1][0]) % mod;
f[i][2] = (f[i - 1][2] * (r[i] - l[i] + 1) + A1 * f[i - 1][0] % mod * d[i]) % mod;
f[i][3] = f[i - 1][3] * (r[i] - l[i] + 1) % mod;
f[i][3] = (A1 * f[i - 1][2] % mod * d[i] + f[i][3]) % mod;
f[i][3] = (A1 * f[i - 1][2] % mod * d[i] + f[i][3]) % mod;
f[i][3] = (A2 * f[i - 1][0] % mod * d[i] % mod * d[i] + f[i][3]) % mod;
f[i][4] = (f[i - 1][4] * (r[i] - l[i] + 1) + A1 * f[i - 1][0]) % mod;
f[i][5] = f[i - 1][5] * (r[i] - l[i] + 1) % mod;
f[i][5] = (A1 * f[i - 1][4] + f[i][5]) % mod;
f[i][5] = (A1 * f[i - 1][4] + f[i][5]) % mod;
f[i][5] = (A2 * f[i - 1][0] + f[i][5]) % mod;
f[i][6] = f[i - 1][6] * (r[i] - l[i] + 1) % mod;
f[i][6] = (A1 * f[i - 1][2] + f[i][6]) % mod;
f[i][6] = (A1 * f[i - 1][4] % mod * d[i] + f[i][6]) % mod;
f[i][6] = (A2 * f[i - 1][0] % mod * d[i] + f[i][6]) % mod;
}
(ans += (S * f[n][1] - f[n][3]) % mod * n % mod) %= mod;
(ans -= T * T % mod * f[n][1] % mod) %= mod;
(ans -= S * f[n][5] % mod) %= mod;
(ans += 2 * T % mod * f[n][6] % mod) %= mod;
num = num * (S * n % mod - T * T % mod) % mod;
num = power(num * f[n][0] % mod, mod - 2) % mod;
ans = (ans % mod + mod) % mod;
num = (num % mod + mod) % mod;
cout << ans * num % mod << "\n";
return 0;
}
bool ED;
inline void JYFILE19() {
// freopen("", "r", stdin);
// freopen("", "w", stdout);
srand(random_device{}());
ios::sync_with_stdio(0), cin.tie(0);
double MIB = fabs((&ED - &ST) / 1048576.), LIM = 512;
cerr << "MEMORY: " << MIB << endl, assert(MIB <= LIM);
}