Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example:
Given matrix = [ [1, 0, 1], [0, -2, 3] ] k = 2
The answer is 2
. Because the sum of rectangle [[0, 1], [-2, 3]]
is 2 and 2 is the max number no larger than k (k = 2).
Note:
- The rectangle inside the matrix must have an area > 0.
- What if the number of rows is much larger than the number of columns?
Credits:
Special thanks to @fujiaozhu for adding this problem and creating all test cases.
Analysis:
Take the following analysis from https://discuss.leetcode.com/topic/48854/java-binary-search-solution-time-complexity-min-m-n-2-max-m-n-log-max-m-n
/* first consider the situation matrix is 1D
we can save every sum of 0~i(0<=i<len) and binary search previous sum to find
possible result for every index, time complexity is O(NlogN).
so in 2D matrix, we can sum up all values from row i to row j and create a 1D array
to use 1D array solution.
If col number is less than row number, we can sum up all values from col i to col j
then use 1D array solution.
*/
Solution:
1 public class Solution { 2 public int maxSumSubmatrix(int[][] matrix, int k) { 3 if (matrix.length == 0 || matrix[0].length == 0) 4 return Integer.MIN_VALUE; 5 6 int res = Integer.MIN_VALUE; 7 int row = matrix.length; 8 int col = matrix[0].length; 9 int m = Math.min(row, col); 10 int n = Math.max(row, col); 11 boolean moreCol = (col > row); 12 13 for (int i = 0; i < m; i++) { 14 int[] sum = new int[n]; 15 for (int j = i; j >= 0; j--) { 16 int val = 0; 17 TreeSet<Integer> sumSet = new TreeSet<Integer>(); 18 sumSet.add(0); 19 for (int l = 0; l < n; l++) { 20 sum[l] = sum[l] + ((moreCol) ? matrix[j][l] : matrix[l][j]); 21 val += sum[l]; 22 Integer other = sumSet.ceiling(val - k); 23 if (other != null) { 24 res = Math.max(res, val - other); 25 } 26 sumSet.add(val); 27 } 28 } 29 } 30 31 return res; 32 } 33 }