矩形Rectangle
題目
我怎麼這麼菜啊
思路&題解
自己的思路
以為可以用掃描線掃,但是發現這些點不連續,沒有多想,就去看題解了
正解
首先掃描線掃座標,先確定右端線,然後在從右往左確定左端的線,邊掃邊加點,那麼矩形左右已經確定了,現在考慮左端線:
左端線上的一個點,它的貢獻就為左端點上面的點 與左端點下面的點構成的矩形,但是對於上界在l點以內的點與下界在r以內的點的矩形並不是最小矩形,要減去,其中點l是在右端線上第一個比i大於或等於的,r是右端線上最後一個比i小的,由於是區間,就可以用樹狀陣列維護一下,然後計算即可
但是這裡還要判斷一下左端線上i下面是否還有點,如果有,那麼下界一定是不能到那個點的,記得判斷
程式碼
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int MAXN = 1e4 + 3;
const ll mod = 1e9 + 7;
int n;
ll ans;
struct node{
int x , y;
friend bool operator < ( node a , node b ){
if( a.x ^ b.x ) return a.x < b.x;
return a.y > b.y;
}
}a[MAXN];
bool f[MAXN];
struct tree{
ll num , x;
}tre[2504];
int maxx;
void modify( int x , ll delta , ll num ){
if( f[x] ) return ;
int y = x;
for( ; x <= 2500 ; x += ( x & -x ) )
tre[x].num += num , tre[x].x += delta;
f[y] = 1;
}
tree query( int x ){
tree ans;ans.x = ans.num= 0;
for( ; x ; x -= ( x & -x) )
ans.x += tre[x].x , ans.num += tre[x].num;
return ans;
}
void pre( int x ){
f[x] = 0;
for( ; x <= 2500 ; x += ( x & -x ) )
tre[x].num =0 , tre[x].x = 0;
}
bool flag[2504];
int b[MAXN] , blen , clen , c[MAXN];
int main(){
scanf( "%d" , &n );
for( int i = 1 ; i <= n ; i ++ )
scanf( "%lld%lld" , &a[i].x , &a[i].y ) , maxx = max( a[i].y , maxx ) , flag[a[i].x] = 1;
sort( a + 1 , a + n + 1 );
for( int i = a[n].x ; i >= a[1].x ; i -- ){
if( !flag[i] ) continue;
blen = clen = 0;
int last = 0;
for( int j = n ; j >= 1 ; j -- ){
if( a[j].x > i ) continue;
if( a[j].x == i ){
b[++blen] = a[j].y;
modify( a[j].y , a[j].y , 1 );
}
else if( a[j].x != last && last ){
b[blen+1] = 2501;
for( int k = 1 ; k <= clen ; k ++ ){
tree s = query( 2501 ) , s1 = query( c[k] - 1 );
s.num -=s1.num , s.x -= s1.x;
tree s2 = query( c[k-1] );s1 = query( c[k] );
s1.num -= s2.num , s1.x -= s2.x;
ans = ( ans + (s1.num * s.x % mod - s.num * s1.x % mod + mod ) % mod * 1ll * ( i - last ) % mod ) % mod;
int o = lower_bound( b + 1 , b + blen + 2 , c[k] ) - b , o1 = o - 1;
s = query( b[o] - 1 ) , s1 = query( c[k] - 1 );
s.num -= s1.num , s.x -= s1.x;
if( b[o1] >= c[k-1] )
s1 = query( c[k] ) , s2 = query( b[o1] ) ;
else
s1 = query( c[k] ) , s2 = query( c[k-1] ) ;
s1.num -= s2.num , s1.x -= s2.x;
ans = ( ans - ((s1.num * s.x % mod - s.num * s1.x % mod + mod ) % mod * 1ll * ( i - last) % mod) + mod ) % mod;
}
//printf( "%lld\n" , ans );
clen = 0;
c[++clen] = a[j].y;
modify( a[j].y , a[j].y , 1 );
last = a[j].x;
}
else{
c[++clen] = a[j].y;
modify( a[j].y , a[j].y , 1 );
last = a[j].x;
}
}
b[blen+1] = 2501;
for( int k = 1 ; k <= clen ; k ++ ){
tree s = query( 2501 ) , s1 = query( c[k] - 1 );
s.num -=s1.num , s.x -= s1.x;
tree s2 = query( c[k-1] );s1 = query( c[k] );
s1.num -= s2.num , s1.x -= s2.x;
ans = ( ans + (s1.num * s.x % mod - s.num * s1.x % mod + mod ) % mod * 1ll * ( i - last ) % mod ) % mod;
int o = lower_bound( b + 1 , b + blen + 2 , c[k] ) - b , o1 = o - 1;
s = query( b[o] - 1 ) , s1 = query( c[k] - 1 );
s.num -= s1.num , s.x -= s1.x;
if( b[o1] >= c[k-1] )
s1 = query( c[k] ) , s2 = query( b[o1] ) ;
else
s1 = query( c[k] ) , s2 = query( c[k-1] ) ;
s1.num -= s2.num , s1.x -= s2.x;
ans = ( ans - ((s1.num * s.x % mod - s.num * s1.x % mod + mod ) % mod * 1ll * ( i - last) % mod) + mod ) % mod;
}
//printf( "%lld\n" , ans );
for( int j = 1 ; j <= n ; j ++ )
pre( a[j].y );
}
printf( "%lld\n" , ans );
return 0;
}
相關文章
- Rectangle Overlap 矩形重疊
- 力扣.223 矩形面積 rectangle-area力扣
- leetcode 掃描線專題 06-leetcode.391 perfect-rectangle 力扣.391 完美矩形LeetCode力扣
- leetcode 掃描線專題 06-leetcode.836 rectangle-overlap 力扣.836 矩形重疊LeetCode力扣
- WPF Rectangle ellipse
- [ARC179E] Rectangle Concatenation
- 矩形覆蓋
- AUTOCAD——矩形命令
- Rectangle for Mac視窗管理工具Mac
- canvas 虛線矩形Canvas
- canvas矩形拖拽效果Canvas
- canvas 繪製矩形Canvas
- 最大加權矩形
- Rectangle Pro for Mac,視窗布局增強工具Mac
- Rectangle Pro for Mac(視窗布局增強工具)Mac
- SVG <rect> 繪製矩形SVG
- LeetCode 836[矩形重疊]LeetCode
- LeetCode 492[構造矩形]LeetCode
- leecode54.螺旋矩形
- opencv外接矩形矯正OpenCV
- 視窗增強工具:Rectangle Pro啟用版
- cad矩形快捷鍵命令設定尺寸 cad矩形快捷鍵命令輸入尺寸
- canvas 設定矩形樣式Canvas
- canvas 繪製圓角矩形Canvas
- CSS3 矩形切角效果CSSS3
- SVG 繪製圓角矩形SVG
- SVG矩形旋轉動畫SVG動畫
- svg生成矩形效果程式碼SVG
- php實現矩形覆蓋PHP
- canvas繪製矩形框Canvas
- canvas 繪製矩形缺角Canvas
- CSS矩形對角斜線CSS
- css圓角矩形邊框CSS
- 【ALGO】Leetcode 85.最大矩形GoLeetCode
- 直方圖中最大矩形直方圖
- 【劍指Offer】矩形覆蓋
- Boost 矩形布林運算
- JZ-010-矩形覆蓋