大家好,我是煎魚。
大家在學習 Go 的時候,肯定都學過 “Go 的指標是不支援指標運算和轉換” 這個知識點。為什麼呢?
首先,Go 是一門靜態語言,所有的變數都必須為標量型別。不同的型別不能夠進行賦值、計算等跨型別的操作。
那麼指標也對應著相對的型別,也在 Compile 的靜態型別檢查的範圍內。同時靜態語言,也稱為強型別。也就是一旦定義了,就不能再改變它。
錯誤的示例
func main(){
num := 5
numPointer := &num
flnum := (*float32)(numPointer)
fmt.Println(flnum)
}
輸出結果:
# command-line-arguments
...: cannot convert numPointer (type *int) to type *float32
在示例中,我們建立了一個 num
變數,值為 5,型別為 int
,準備幹一番大事。
接下來我們取了其對於的指標地址後,試圖強制轉換為 *float32
,結果失敗...
萬能的破壁 unsafe
針對剛剛的 “錯誤示例”,我們可以採用今天的男主角 unsafe
標準庫來解決。它是一個神奇的包,在官方的詮釋中,有如下概述:
- 圍繞 Go 程式記憶體安全及型別的操作。
- 很可能會是不可移植的。
- 不受 Go 1 相容性指南的保護。
簡單來講就是,不怎麼推薦你使用,因為它是 unsafe(不安全的)。
但是在特殊的場景下,使用了它,可以打破 Go 的型別和記憶體安全機制,讓你獲得眼前一亮的驚喜效果。
unsafe.Pointer
為了解決這個問題,需要用到 unsafe.Pointer
。它表示任意型別且可定址的指標值,可以在不同的指標型別之間進行轉換(類似 C 語言的 void * 的用途)。
其包含四種核心操作:
- 任何型別的指標值都可以轉換為 Pointer。
- Pointer 可以轉換為任何型別的指標值。
- uintptr 可以轉換為 Pointer。
- Pointer 可以轉換為 uintptr。
在這一部分,重點看第一點、第二點。你再想想怎麼修改 “錯誤的例子” 讓它執行起來?
修改如下:
func main(){
num := 5
numPointer := &num
flnum := (*float32)(unsafe.Pointer(numPointer))
fmt.Println(flnum)
}
輸出結果:
0xc4200140b0
在上述程式碼中,我們小加改動。通過 unsafe.Pointer
的特性對該指標變數進行了修改,就可以完成任意型別(*T)的指標轉換。
需要注意的是,這時還無法對變數進行操作或訪問,因為不知道該指標地址指向的東西具體是什麼型別。不知道是什麼型別,又如何進行解析呢?
無法解析也就自然無法對其變更了。
unsafe.Offsetof
在上小節中,我們對普通的指標變數進行了修改。那麼它是否能做更復雜一點的事呢?
type Num struct{
i string
j int64
}
func main(){
n := Num{i: "EDDYCJY", j: 1}
nPointer := unsafe.Pointer(&n)
niPointer := (*string)(unsafe.Pointer(nPointer))
*niPointer = "煎魚"
njPointer := (*int64)(unsafe.Pointer(uintptr(nPointer) + unsafe.Offsetof(n.j)))
*njPointer = 2
fmt.Printf("n.i: %s, n.j: %d", n.i, n.j)
}
輸出結果:
n.i: 煎魚, n.j: 2
在剖析這段程式碼做了什麼事之前,我們需要了解結構體的一些基本概念:
- 結構體的成員變數在記憶體儲存上是一段連續的記憶體。
- 結構體的初始地址就是第一個成員變數的記憶體地址。
- 基於結構體的成員地址去計算偏移量。就能夠得出其他成員變數的記憶體地址。
再回來看看上述程式碼,得出執行流程:
- 修改
n.i
值:i
為第一個成員變數。因此不需要進行偏移量計算,直接取出指標後轉換為Pointer
,再強制轉換為字串型別的指標值即可。 - 修改
n.j
值:j
為第二個成員變數。需要進行偏移量計算,才可以對其記憶體地址進行修改。在進行了偏移運算後,當前地址已經指向第二個成員變數。接著重複轉換賦值即可。
細節分析
需要注意的是,這裡使用瞭如下方法(來完成偏移計算的目標):
1、uintptr:uintptr
是 Go 的內建型別。返回無符號整數,可儲存一個完整的地址。後續常用於指標運算
type uintptr uintptr
2、unsafe.Offsetof:返回成員變數 x 在結構體當中的偏移量。更具體的講,就是返回結構體初始位置到 x 之間的位元組數。需要注意的是入參 ArbitraryType
表示任意型別,並非定義的 int
。它實際作用是一個佔位符
func Offsetof(x ArbitraryType) uintptr
在這一部分,其實就是巧用了 Pointer
的第三、第四點特性。這時候就已經可以對變數進行操作了。
糟糕的例子
func main(){
n := Num{i: "EDDYCJY", j: 1}
nPointer := unsafe.Pointer(&n)
...
ptr := uintptr(nPointer)
njPointer := (*int64)(unsafe.Pointer(ptr + unsafe.Offsetof(n.j)))
...
}
這裡存在一個問題,uintptr
型別是不能儲存在臨時變數中的。因為從 GC 的角度來看,uintptr
型別的臨時變數只是一個無符號整數,並不知道它是一個指標地址。
因此當滿足一定條件後,ptr
這個臨時變數是可能被垃圾回收掉的,那麼接下來的記憶體操作,豈不成迷?
若有任何疑問歡迎評論區反饋和交流,最好的關係是互相成就,各位的點贊就是煎魚創作的最大動力,感謝支援。
文章持續更新,可以微信搜【腦子進煎魚了】閱讀,本文 GitHub github.com/eddycjy/blog 已收錄,學習 Go 語言可以看 Go 學習地圖和路線,歡迎 Star 催更。
總結
簡潔回顧兩個知識點,如下:
- 第一是
unsafe.Pointer
可以讓你的變數在不同的指標型別轉來轉去,也就是表示為任意可定址的指標型別。 - 第二是
uintptr
常用於與unsafe.Pointer
打配合,用於做指標運算,巧妙地很。