LOJ#2552. 「CTSC2018」假面(期望 揹包)

自為風月馬前卒發表於2018-10-23

題意

題目連結

Sol

多年以後,我終於把這題的暴力打出來了qwq 好感動啊。。

剛開始的時候想的是:

(f[i][j])表示第(i)輪, 第(j)個人血量的期望值

轉移的時候若要淦這個人,那麼(f[i][j] = (f[i – 1][j] + 1) * p + (f[i – 1][j]) * (1 – p))

然後發現自己傻逼了。。因為期望不能正著推。

考慮直接推概率,設(t[k][i][j])表示第(k)輪,第(i)個人,血量為(j)的概率

這玩意兒是可以轉移的,就是判一下這次打中了沒有

第二問可以對每個點分別算答案,設(g[i][j])表示除必須活著的人外,前(i)個人中,有(j)個活著的概率,揹包轉移一下

這樣複雜度是(O(qn + n^3))

顯然第二問看起來非常暴力,

標算的做法好像叫“退揹包”,也就是從揹包中刪除一個元素

先不考慮某個元素必須存活,推一遍得到(g[i][j])表示前(i)個人中,有(j)個存活的概率

考慮轉移的式子,設(ali[i])表示第(i)個人活著的概率

(g[i][j] = g[i – 1][j – 1] * ali[i] + g[i – 1][j] * (1 – ali[i]))

而我們要得到的實際上就是(g[i-1][j])這一項

那麼(g[i – 1][j] = frac{g[i][j] – g[i – 1][j – 1] * ali[i]}{1 – ali[i]})

倒著推一遍即可,注意當(1 – ali[i] = 0)的時候需要特判,此時(g[i – 1][j] = g[i][j + 1])

70分

#include<bits/stdc++.h>
//#define int long long 
using namespace std;
const int MAXN = 201, mod = 998244353;
int f[2][MAXN], g[MAXN][MAXN], t[2][MAXN][MAXN];
// f: expect 
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < `0` || c > `9`) {if(c == `-`) f = -1; c = getchar();}
    while(c >= `0` && c <= `9`) x = x * 10 + c - `0`, c = getchar();
    return x * f;
}
int N, a[MAXN], Q, em[MAXN];
int fp(int a, int p) {
    int base = 1;
    while(p) {
        if(p & 1) base = 1ll * base * a % mod;
        a = 1ll * a * a % mod; p >>= 1;
    }
    return base;
}
int inv(int a) {
    return fp(a, mod - 2);
}
int add(int x, int y) {
    if(x + y < 0) return x + y + mod;
    else return x + y >= mod ? x + y - mod : x + y;
}
int mul(int x, int y) {
    x = (x + mod) % mod; y = (y + mod) % mod;
    return 1ll * x * y % mod;
}
int solve(int id, int o, int N) {//這裡dp的時候不能直接表示有j個活著,必須表示除i之外有j個活著。。 
    memset(g, 0, sizeof(g));
    g[0][0] = 1; 
    for(int i = 1; i <= N; i++) {
        for(int j = 0; j <= N; j++) {
            if(em[i] ^ id) {
                g[i][j] = mul(g[i - 1][j], t[o][em[i]][0]);
                if(j) g[i][j] = add(g[i][j], mul(g[i - 1][j - 1], 1 - t[o][em[i]][0]));
            }
            else g[i][j] = g[i - 1][j];
        }
    }
    int ans = 0;
    for(int i = 0; i < N; i++) 
        ans = add(ans, mul(mul(1 - t[o][id][0], g[N][i]), inv(i + 1)));
    return ans;
}
signed main() {
//  freopen("a.in", "r", stdin);
//  freopen("b.out", "w", stdout);
    N = read();
    for(int i = 1; i <= N; i++) a[i] = read(), t[0][i][a[i]] = 1, f[0][i] = a[i];
    Q = read();
    int o = 1;
    for(int i = 1; i <= Q; i++, o ^= 1) {
        int opt = read();
        memcpy(t[o], t[o ^ 1], sizeof(t[o]));
        if(opt == 0) {//
            int id = read(), u = read(), v = read(), p = 1ll * u * inv(v) % mod;
            t[o][id][0] = add(t[o][id][0], mul(p, t[o][id][1]));
            for(int j = 1; j <= a[id]; j++) t[o][id][j] = add(mul(p, t[o ^ 1][id][j + 1]), mul(1 - p, t[o ^ 1][id][j]));
        } else if(opt == 1) {
            int k = read(), cnt = 0;
            for(int i = 1; i <= k; i++) em[++cnt] = read();
            for(int i = 1; i <= k; i++) printf("%d ", solve(em[i], o, cnt)); puts("");
        }
    }
    for(int i = 1; i <= N; i++) {
        int ans = 0;
        for(int j = 1; j <= a[i]; j++) 
            ans = add(ans, mul(j, t[o ^ 1][i][j]));
        printf("%d ", ans);
        
    }
    return 0;
}
/*
*/

100分

#include<bits/stdc++.h>
//#define int long long 
using namespace std;
const int MAXN = 201, mod = 998244353;
int f[2][MAXN], g[MAXN][MAXN], t[2][MAXN][MAXN];
// f: expect 
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < `0` || c > `9`) {if(c == `-`) f = -1; c = getchar();}
    while(c >= `0` && c <= `9`) x = x * 10 + c - `0`, c = getchar();
    return x * f;
}
int N, a[MAXN], Q, em[MAXN], ans[MAXN], ali[MAXN], tp[MAXN], Inv[MAXN];
int add(int x, int y) {
    if(x + y < 0) return x + y + mod;
    else return x + y >= mod ? x + y - mod : x + y;
}
int mul(int x, int y) {
    x = (x + mod) % mod; y = (y + mod) % mod;
    return 1ll * x * y % mod;
}
int fp(int a, int p) {
    int base = 1;
    while(p) {
        if(p & 1) base = 1ll * base * a % mod;
        a = 1ll * a * a % mod; p >>= 1;
    }
    return base;
}
int inv(int a) {
    a = add(a, mod);
    return fp(a, mod - 2);
}

void Pre(int o, int N) {
//  memset(g, 0, sizeof(g));
    g[0][0] = 1; 
    for(int i = 1; i <= N; i++) {
        ali[i] = (1 - t[o][em[i]][0] + mod) % mod;//alive
        for(int j = 0; j <= i; j++) {
            g[i][j] = mul(g[i - 1][j], t[o][em[i]][0]);
            if(j) g[i][j] = add(g[i][j], mul(g[i - 1][j - 1], ali[i]));
        }
    }   
}
int solve(int id, int o, int N) {
    //memset(tp, 0, sizeof(tp));
    if(!ali[id]) return 0;
    if(ali[id] == 1) {
        for(int i = 1; i <= N; i++) tp[i - 1] = g[N][i];
    } else {
        int down = inv(1 - ali[id]);
        tp[0] = mul(g[N][0], down);
        for(int i = 1; i <= N; i++) 
            tp[i] = mul(g[N][i] - mul(tp[i - 1], ali[id]), down);
    }

    int ans = 0;
    for(int i = 1; i <= N; i++) 
        ans = add(ans, mul(mul(ali[id], tp[i - 1]), Inv[i]));
    return ans;
}
signed main() {
    //freopen("faceless10.in", "r", stdin);
//  freopen("b.out", "w", stdout);
    N = read();
    for(int i = 1; i <= N; i++) a[i] = read(), t[0][i][a[i]] = 1, f[0][i] = a[i], Inv[i] = inv(i);
    Q = read();
    int o = 1;
    for(int i = 1; i <= Q; i++, o ^= 1) {
        int opt = read();
        memcpy(t[o], t[o ^ 1], sizeof(t[o]));
        if(opt == 0) {//
            int id = read(), u = read(), v = read(), p = 1ll * u * inv(v) % mod;
            t[o][id][0] = add(t[o][id][0], mul(p, t[o][id][1]));
            for(int j = 1; j <= a[id]; j++) t[o][id][j] = add(mul(p, t[o ^ 1][id][j + 1]), mul(1 - p, t[o ^ 1][id][j]));
        } else if(opt == 1) {
            int k = read();
            for(int i = 1; i <= k; i++) em[i] = read();
            Pre(o, k);
            for(int i = k; i >= 1; i--) ans[i] = solve(i, o, k);
            for(int i = 1; i <= k; i++) printf("%d ", ans[i]); puts("");
        }
    }
    for(int i = 1; i <= N; i++) {
        int ans = 0;
        for(int j = 1; j <= a[i]; j++) 
            ans = add(ans, mul(j, t[o ^ 1][i][j]));
        printf("%d ", ans);
        
    }
    return 0;
}
/*
*/