資料結構 關於B樹說明及插入和分裂

yuntui發表於2016-11-03
注意:本文是我學習的一點總結,具體的程式碼並沒有經過除錯,是透過演算法導論B樹中的描述寫成,但是增加了關於資料的連結串列,而不是
如演算法導論中的一個陣列,留於此用於以後的繼續深入學習。

B樹的定義和特點:
B樹的階實際上就是指向子樹的最大指標個數
比如2-3樹階為3,2-3-4樹階為4
B樹已經不是常規的樹結構,多用於檔案系統管理,每個節點可以有多個指向
孩子的指標,特點如下:
1、根要麼為空樹,要麼至少有2個子樹
2、假設M階的B樹,n個指向子樹的指標
   則:
   Ceil(M/2)<=n<=M
   n-1個關鍵字
   則
   ceil(M/2)-1<=n-1<=M-1
3、所有葉子結點在同一層次
4、設Pn為指標,Kn為關鍵字
  KEYS=n P0K1P1K2P2K3P3..........
  P0指向子樹的所有值均小於K1
  P1指向子樹的所有值均大於K1
5、有K1<K2<K3<K4的順序
如下就是一顆5階4關鍵字的B樹




B樹的優勢(可以說也是B+樹的優勢):
由於在一些應用中比如資料庫應用中,資料量肯能非常大,在這種情況一棵完全依賴記憶體的
樹就不可取了,首先資料量過大使用AVL樹或者紅黑樹得到的深度難以想象,二來不可能有
那麼多的記憶體用於存放整個資料,實際上在資料庫中往往是透過一個指標(並非記憶體中的指標),
這個指標實際上是資料塊的塊號,如果我們只將B樹的根結點快取到記憶體中,那麼我們根據
B樹的查詢原則將路徑中的資料塊存放到快取,那麼不僅效能大大提高,同時也減少了記憶體
的使用,一般物理磁碟的讀取速度為毫秒級別,而記憶體矽儲存的讀取速度為納秒級別,基本
上是5個數量級的差別。同時為了更大發揮磁碟讀取的效率,一般來講在資料庫中B+樹的根結
點為1個block.


B樹的插入分裂:

1、如果葉子結點有足夠的空間如果按照嚴格的定義就是

   ciel(M/2)-1<=n-1<M-1  注意是小於M-1這樣肯定小於

   最大允許的關鍵字,那麼就在找到的葉子結點進行插入

2、如果葉子結點關鍵字大於M-1,而雙親結點空間<M-1,則

   分裂葉子結點,同時中間元素上移到雙親結點(我們以奇數

   關鍵字為例)的相應位置,這樣的移動的依據來自於

   第四點:

  KEYS=n P0K1P1K2P2K3P3..........

  P0指向子樹的所有值均小於K1

  P1指向子樹的所有值均大於K1

  B樹實際上也是一個有序樹,按照這個規則上移後必然也滿足

  上面的規則,因為在一個節點中資料是有序排列我們設定是

  升序。

 

3、如果雙親結點也處於M-1狀態,那麼雙親結點也需要分裂,其規則

   如葉子結點一致,關於這一點演示如下:

考慮如下樹(5,4關鍵字,注意5階關子健最少2個最多4)


插入55

 

4、如果根結點也處於M-1狀態,上面的情況就出現了B樹索引高度加1的情況

   演示如下:

   考慮如下樹(5,4關鍵字)插入84

最後節點64分裂開來,樹的高度由3變為了



演算法導論中的說明:
在演算法導論中對b樹的分裂做了一定的改動,也就是說在進行資料查詢的時候
路過的結點,如果發現出現了等於最大關鍵的節點就進行分裂,這樣雖然增加
了分裂的可能性,但是並不會增加太多因為增加的分裂次數只是一個常量而已
是一種方便的可行的程式設計方式。
並且進行了義一箇中間量用於標示節點指標的中間位置,如果設定這個中間為
_BTREE_POINTER_M_,那麼指標的個數最大始終為2*_BTREE_POINTER_M_為偶數,
而關鍵字個數始終為2*_BTREE_POINTER_M_-1為一個奇數,如果定義
BTREE_POINTER_M_=2 那麼就是2-3-4樹,這樣對程式設計也帶來了一定的方便,我們
也採用這種方式。而2-3樹這樣的定義是不能實現的。

程式碼(問題很多沒除錯過,演算法導論描述編寫而成),這部分可以參考演算法導論關於
B樹的描述

點選(此處)摺疊或開啟

  1. head.h
  2. #define _BTREE_POINTER_M_ 2
  3. #define _BTREE_POINTER_ (_BTREE_POINTER_M_ * 2) //2-3-4tree。
  4. #define _BTREE_KEYS_ (_BTREE_POINTER_M_ * 2-1)
  5. #define bool int
  6. #define true 1
  7. #define false 0
  8. #define ALLOCBNODE (BTNodeP)calloc(1,sizeof(BTNode))
  9. #define SIZENODE sizeof(DULNODE)
  10. #define SIZELISTHEAD sizeof(LISTHEAD)
  11. #define SIZEBTHead sizeof(BTHead)


  12. typedef struct dulnode //node type of btree data
  13. {

  14.         int data; //example
  15.         struct dulnode *prior;
  16.         struct dulnode *next;
  17. } DULNODE,*DULNODEP;

  18. typedef struct listhead ///node type of btree data header
  19. {

  20.         DULNODEP head;
  21.         DULNODEP last;
  22.         DULNODEP current;
  23.         int length;
  24. } LISTHEAD,*LISTHEADP;

  25. typedef struct BTNode{
  26.         int keynum; // 結點中關鍵字的個數,keynum <= _BTREE_KEYS_
  27.         LISTHEADP keyhder; // 資料連結串列實現的頭指標
  28.         struct BTNode* child[_BTREE_POINTER_]; // 孩子指標
  29.         bool isLeaf; // 是否是葉子節點的標誌
  30.         int nodenum; // 節點計數
  31. }BTNode,*BTNodeP;


  32. typedef struct BTHead{
  33.         BTNodeP root_node; //指向B樹的根結點
  34.         int max_node_num; // 當前節點個數計數
  35.            int btree_level; //B樹的層次
  36. }BTHead,*BTHeadP;


點選(此處)摺疊或開啟

  1. #include<stdio.h>
  2. #inlcude<stdlib.h>


  3. //chain fun

  4. bool initlist(LISTHEADP* p)
  5. {
  6.         *p = (LISTHEADP)malloc(SIZELISTHEAD);
  7.         if(!*p)
  8.         {
  9.                 return false;
  10.         }
  11.         else
  12.         {
  13.                 memset(*p,0,SIZELISTHEAD);
  14.                 (*p)->head = NULL;
  15.                 (*p)->last = NULL;
  16.                 (*p)->current = NULL;
  17.                 (*p)->length = 0;
  18.                 return true;
  19.         }
  20. }

  21. //inslast insert one node at last postion

  22. void inslast(LISTHEADP h,DULNODEP s)
  23. {
  24.         if(!(h->head)) //list is empty or not
  25.         {
  26.                 h->head = s;
  27.                 h->last = s;
  28.                 h->current = s;
  29.                 h->length++;
  30.         }
  31.         else
  32.         {
  33.                 h->last->next = s;
  34.                 s->prior = h->last;
  35.                 h->last = s;
  36.                 h->current = s;
  37.                 h->length++;
  38.         }
  39. }

  40. void delfirst(LISTHEADP h) //delete first node current_point to next node
  41. {
  42.         DULNODEP p;
  43.         if(!(h->head))
  44.         {
  45.                 printf("error(1):delfirst() error list have no node!\n");
  46.                 exit(1);
  47.         }
  48.         else if(!(h->head->next)) //only one node
  49.         {
  50.                 free(h->head);
  51.                 h->head = NULL;
  52.                 h->current = NULL;
  53.                 h->last = NULL;
  54.                 h->length--;
  55.         }
  56.         else
  57.         {
  58.                 p = h->head ;
  59.                 h->head->next->prior = NULL;
  60.                 h->head = h->head->next;
  61.                 h->current = h->head;
  62.                 h->length--;
  63.                 free(p);
  64.         }
  65. }

  66. bool makenode(int datavalue,DULNODEP* p)
  67. {
  68.         *p = (DULNODEP) malloc (SIZENODE);
  69.         if(!(*p))
  70.         {
  71.                 return false;
  72.         }
  73.         else
  74.         {
  75.                 memset(*p,0,SIZENODE);
  76.                 (*p)->data = datavalue;
  77.                 (*p)->next = NULL;
  78.                 (*p)->prior = NULL;
  79.                 return true;
  80.         }
  81. }

  82. static DULNODEP getelemp(const LISTHEADP h,int postion)
  83. {
  84.         int i=0;
  85.         DULNODEP p;
  86.         if(postion > h->length || postion ==0 )
  87.         {
  88.                 printf("error(2):getelemp() postion large than lenth or poastion = 0\n");
  89.                 exit(2);
  90.         }
  91.         p = h->head;

  92.         while(i<postion-1)
  93.         {
  94.                 i++;
  95.                 p = p->next;
  96.         }
  97.         return p;
  98. }

  99. void dellast(LISTHEADP h) //delete last node current_point to prior node
  100. {
  101.         DULNODEP p;
  102.         if(!(h->head))
  103.         {
  104.                 printf("error(1):delfirst() error list have no node!\n");
  105.                 exit(1);
  106.         }
  107.         else if(!(h->head->next)) //only one node
  108.         {
  109.                 free(h->head);
  110.                 h->head = NULL;
  111.                 h->current = NULL;
  112.                 h->last = NULL;
  113.                 h->length--;
  114.         }
  115.         else
  116.         {
  117.                 p = h->last ;
  118.                 h->last->prior->next = NULL;
  119.                 h->last = p->prior;
  120.                 h->current = p->prior;
  121.                 h->length--;
  122.                 free(p);
  123.         }
  124. }


  125. static int findpos(LISTHEADP h,int k,int i)
  126. {
  127.     DULNODEP p=NULL;

  128.     if(h->length == 0)
  129.         {return 1;}
  130.     else
  131.         {
  132.             p = h->last;
  133.             while(i>=1 && p->data > k) // exp : i = 1 one key if k<data frist insert else k>data return 2
  134.                 {
  135.              if(i==1)
  136.                  {
  137.                      return i;
  138.                  }
  139.                  p = p->prior;
  140.                  i--;
  141.                 }
  142.             return i+1; // i+1=2 is insert after node 1
  143.         }
  144. }


  145. //addnode add one node after give postion
  146. void addnode(DULNODEP inode,int postion,LISTHEADP h) //insert one elem after postion
  147. {
  148.         DULNODEP p;
  149.         p = getelemp(h,postion);
  150.         if(!p->next) //last node?
  151.         {
  152.                 p->next = inode;
  153.                 inode->prior = p;
  154.                 inode->next = NULL;
  155.                 h->last = inode;
  156.                 h->current = inode;
  157.         }
  158.         else
  159.         {
  160.                 inode->prior = p;
  161.                 inode->next = p->next;
  162.                 p->next->prior = inode;
  163.                 p->next = inode;
  164.                 h->current = inode;
  165.         }
  166.         h->length++;
  167. }

  168. //insfirst insert one node at first postion

  169. void insfirst(LISTHEADP h,DULNODEP s)
  170. {
  171.         if(!(h->head)) //list is empty or not
  172.         {
  173.                 h->head = s;
  174.                 h->last = s;
  175.                 h->current = s;
  176.                 h->length++;
  177.         }
  178.         else
  179.         {
  180.                 h->head->prior = s;
  181.                 s ->next = h->head;
  182.                 h->head = s;
  183.                 h->current = s;
  184.                 h->length++;

  185.         }

  186. }


  187. //btree fun

  188. bool B_Tree_Inital(BTHeadP* p)
  189. {
  190.         *p = (BTHeadP)malloc(SIZEBTHead);
  191.         if(!*p)
  192.         {
  193.                 return false;
  194.         }
  195.         else
  196.         {
  197.                 memset(*p,0,SIZEBTHead);
  198.                 (*p)->root_node = NULL;
  199.                 (*p)->max_node_num = 0;
  200.                 (*p)->btree_level = 0;
  201.                 return true;
  202.         }
  203. }


  204. void B_Tree_Create(BTNodeP* root,BTHeadP* p)
  205. {
  206.     BTNodeP x = NULL;
  207.     if(!(x = ALLOCBNODE))
  208.         {
  209.             printf("B_Tree_Create error mem error(10)\n");
  210.             exit(10);
  211.         }
  212.     (*root) = x;
  213.     (*p)->root_node = (*root);//head pointer is root
  214.     (*p)->max_node_num++;
  215.     (*p)->btree_level++;
  216.     (x)->isLeaf = true;
  217.     (x)->keynum = 0;
  218.     (x)->nodenum = (*p)->max_node_num;
  219.     if(!(initlist(&(x->keyhder)));
  220.         {
  221.             printf("B_Tree_Create error mem error(11)\n");
  222.             exit(11);
  223.         }
  224.         
  225. }

  226. void B_Tree_Split(BTNodeP* x,int i,BTNodeP* y,BTHeadP* p) //X是上層結點,y是X的一個滿的子節點,i為y中間元素上浮到x中的位置
  227. {
  228.     BTNodeP z = NULL;
  229.     DULNODEP zcnode = NULL; //btree node z's chain node pointer;
  230.     DULNODEP yfnode = NULL; //used find any node pointer;
  231.     int j=1;
  232.     if(!(z = ALLOCBNODE))
  233.         {
  234.             printf("B_Tree_Split error mem error(12)\n");
  235.             exit(12);
  236.         }
  237.     (*p)->max_node_num++;
  238.     z->isLeaf = (*y)->isLeaf;
  239.     z->keynum = _BTREE_POINTER_M_ - 1;
  240.     z->nodenum = (*p)->max_node_num++;
  241.     if(!(initlist(&(z->keyhder)));
  242.         {
  243.             printf("B_Tree_Split error mem error(13)\n");
  244.             exit(13);
  245.         }
  246.     yfnode = getelemp((*y)->keyhder,_BTREE_POINTER_M_+1);
  247.     
  248.     for(j=1;j<=_BTREE_POINTER_M_-1;j++) //z first half key = y last half key this is very import
  249.     /*
  250.          --x--
  251.         --y-- --z--
  252.     */
  253.         {
  254.             makenode(yfnode->data,&zcnode);
  255.             inslast(z->keyhder,zcnode);
  256.             yfnode = yfnode->next;        
  257.         }
  258.     for(j=1;j<=_BTREE_POINTER_M_-1;j++)//delete y last half key beacuase the key is give to z
  259.         {
  260.             dellast((*y)->keyhder);
  261.         }
  262.     if(!((*y)->isLeaf)) // if node y is not leaf node,child pointer must change ,give half pointer to z ,but total pointer not change
  263.         {
  264.             for(j=1;j<=_BTREE_POINTER_M_;j++)
  265.                 {
  266.                     z->child[j-1] = (*y)->child[j-1+_BTREE_POINTER_M_];
  267.                     (*y)->child[j-1+_BTREE_POINTER_M_] = NULL;
  268.                 }
  269.         }
  270.     (*y)->keynum = _BTREE_POINTER_M_ - 1; //key change
  271.     for(j=(*x)->keynum+1;j>=i+1;j-- ) // 0 1 1 <insert new i=2 is before 2> 2 2 3 3 4 4 --> 0 1 1 new2 new2 3 3 4 4 5 5 i now is before i
  272.         {
  273.             (*x)->child[j] = (*x)->child[j-1];
  274.         }
  275.     (*x)->child[i] = z;

  276.     //find y last data is split data,use yfnode to store
  277.     makenode((*y)->keyhder->last->data,&yfnode);
  278.     //if sucess delete last y data
  279.     dellast((*y)->keyhder) ;
  280.     
  281.     if(i == 1) //move key value
  282.         {
  283.             insfirst((*x)->keyhder,yfnode);
  284.         }
  285.     else
  286.         {
  287.             addnode(yfnode,i-1,(*x)->keyhder);
  288.         }
  289.     (*x)->keynum ++;
  290.     return yfnode->data;
  291.     
  292. }

  293. void B_Tree_Insert_Nofull(BTNodeP* x,int k,BTHeadP* p)
  294. {
  295.     int i ;
  296.     int pos;
  297.     int dataret;
  298.     DULNODEP np = NULL;
  299.     i = (*x)->keynum;
  300.     makenode(k,&np);
  301.     
  302.     if((*x)->isLeaf) //if the x is leaf node ?
  303.         {
  304.             pos=findpos((*x)->keyhder,k,i);
  305.             if(pos == 1)
  306.                 {
  307.                  insfirst((*x)->keyhder,np);// pos == 1 insert at first
  308.                 }
  309.             else
  310.                 {
  311.                     addnode(np,pos-1,(*x)->keyhder); //addnode is insert after pos so pos-1
  312.                 }
  313.             (*x)->keynum++
  314.         }
  315.     else
  316.         {
  317.             pos=findpos((*x)->keyhder,k,i); //not leaf node find leaf node
  318.             if(((*x)->child)[pos-1]->keynum == _BTREE_KEYS_ ) // is child leaf node is full split it
  319.                 {
  320.                 
  321.                     dataret=B_Tree_Split(x,pos,&(((*x)->child)[pos-1]),p); //key real insert pos
  322.                     if( k > dataret) //split sucess if k> B_TREE_SPLIS RETURN SPLIT DATA
  323.                         {
  324.                             pos=pos+1;
  325.                         }
  326.                 }
  327.             B_Tree_Insert_Nofull(&(((*x)->child)[pos-1]),k); //key pos is 1 2 3 4 5......pointer pos is 0 1 2 3 4....so pos-1            
  328.         }
  329. }    


  330. void B_Tree_Insert(BTHeadP* p,int k) //k is value to insert ,BtheadP has a pointer to b_tree_root
  331. {
  332.     BTNodeP r = (*p)->root_node;
  333.     BTNodeP s = NULL;
  334.     if(r->keynum = _BTREE_KEYS_)
  335.         {
  336.             if(!(s = ALLOCBNODE))// new root node
  337.                  {
  338.              printf("B_Tree_Insert error mem error(14)\n");
  339.              exit(14);
  340.                   }
  341.             (*p)->max_node_num++;
  342.             (*p)->root_node = s;
  343.             (*p)->btree_level++;
  344.             s->isLeaf = FALSE;
  345.             s->keynum = 0;
  346.             s->child[0] = r;
  347.             s->nodenum = (*p)->max_node_num;    
  348.             if(!(initlist(&(s->keyhder)));
  349.          {
  350.              printf("B_Tree_Insert error mem error(15)\n");
  351.              exit(15);
  352.          }
  353.              B_Tree_Split(&s,1,&r,&p);
  354.              B_Tree_Insert_Nofull(&s,k,p);            
  355.         }
  356.     else
  357.         {
  358.             B_Tree_Insert_Nofull(&r,k,p);        
  359.         }
  360. }



關於B樹的刪除會涉及到更多的複雜的方面,比如普通刪除,比如節點融合,B樹高度的
降低等,我沒有仔細的學習和研究。

可見B樹B+樹這種資料結構還是比較負載,如果加上很多很多的其他的連結串列或者資料結構
那麼編寫程式的難度非常大,我們使用資料庫的DBA們應該為資料庫軟體的開發者們心存
敬畏,他們是天才的程式設計師。

來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/30633755/viewspace-2127705/,如需轉載,請註明出處,否則將追究法律責任。

相關文章