描述:
給定一個整數陣列 nums
,找出一個序列中乘積最大的連續子序列(該序列至少包含一個數)。
示例 1:
輸入: [2,3,-2,4]
輸出: 6
解釋: 子陣列 [2,3] 有最大乘積 6。
複製程式碼
示例 2:
輸入: [-2,0,-1]
輸出: 0
解釋: 結果不能為 2, 因為 [-2,-1] 不是子陣列。
複製程式碼
思路:
這道題可以動態規劃的方法解決。DP定義:min[i] max[i],用來存i位置時,乘積的最大子序列/最小子序列。因為有負數的存在,所以不能只存最大值,還要存最小值。
DP方程:
if(i > 0){
max[i+1] = max[i]*(i+1);
min[i+1] = min[i]*(i+1);
}else{
max[i+1] = min[i]*(i+1);
min[i+1] = max[i]*(i+1);
}複製程式碼
程式碼:
class Solution {
public int maxProduct(int[] nums) {
int[] min = new int[nums.length];
int[] max = new int[nums.length];
min[0] = nums[0];
max[0] = nums[0];
int res = nums[0];
for (int i = 1; i < nums.length; i++) {
min[i] = Math.min(Math.min(min[i - 1] * nums[i], max[i - 1] * nums[i]), nums[i]);
max[i] = Math.max(Math.max(max[i - 1] * nums[i], min[i - 1] * nums[i]), nums[i]);
res = Math.max(res,max[i]);
}
return res;
}
}
複製程式碼