題意
Sol
知道FFT能做字串匹配的話這就是個裸題了吧。。
考慮把B翻轉過來,如果(sum_{k = 0}^M (B_{i – k} – A_k)^2 * B_{i-k}*A_k = 0)
那麼說明能匹配。然後拆開三波FFT就行了
/*
*/
#include<bits/stdc++.h>
#define LL long long
const int MAXN = 1e6 + 10, INF = 1e9 + 7;
using namespace std;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < `0` || c > `9`) {if(c == `-`) f = -1; c = getchar();}
while(c >= `0` && c <= `9`) x = x * 10 + c - `0`, c = getchar();
return x * f;
}
int N, M;
LL g[MAXN], f[MAXN];
char sa[MAXN], sb[MAXN];
int ta[MAXN], tb[MAXN], a[MAXN], b[MAXN], rev[MAXN], lim;
LL sqr2(int x) {return 1ll * x * x;}
LL sqr3(int x) {return 1ll * x * x * x;}
const double PI = acos(-1);
struct com {
double x, y;
com operator * (const com &rhs) const {
return {x * rhs.x - y * rhs.y, x * rhs.y + y * rhs.x};
}
com operator + (const com &rhs) const {
return {x + rhs.x, y + rhs.y};
}
com operator - (const com &rhs) const {
return {x - rhs.x, y - rhs.y};
}
}A[MAXN], B[MAXN];
void FFT(com *A, int lim, int type) {
for(int i = 0; i < lim; i++) if(i < rev[i]) swap(A[i], A[rev[i]]);
for(int mid = 1; mid < lim; mid <<= 1) {
com wn = {cos(PI / mid), type * sin(PI / mid)};
for(int i = 0; i < lim; i += (mid << 1)) {
com w = {1, 0};
for(int j = 0; j < mid; j++, w = w * wn) {
com x = A[i + j], y = w * A[i + j + mid];
A[i + j] = x + y;
A[i + j + mid] = x - y;
}
}
}
if(type == -1) {
for(int i = 0; i <= lim; i++) A[i].x /= lim;
}
}
void mul(int *b, int *a) {
memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
for(int i = 0; i < N; i++) B[i].x = b[i];
for(int i = 0; i < M; i++) A[i].x = a[i];
FFT(B, lim, 1);
FFT(A, lim, 1);
for(int i = 0; i < lim; i++) B[i] = B[i] * A[i];
FFT(B, lim, -1);
for(int i = M - 1; i <= N; i++)
f[i] += round(B[i].x);
}
signed main() {
//freopen("2.in", "r", stdin); freopen("b.out", "w", stdout);
M = read(); N = read();
scanf("%s %s", sa, sb);
for(int i = 0; i < M; i++) ta[i] = (sa[i] == `*` ? 0 : sa[i] - `a` + 1);
for(int i = 0; i < N; i++) tb[i] = (sb[i] == `*` ? 0 : sb[i] - `a` + 1);
reverse(tb, tb + N);
int len = 0; lim = 1;
while(lim <= N + M) len++, lim <<= 1;
for(int i = 0; i < lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << len - 1);
for(int i = 0; i < N; i++) b[i] = sqr3(tb[i]);
for(int i = 0; i < M; i++) a[i] = ta[i];
mul(b, a);
for(int i = 0; i < N; i++) b[i] = -2 * sqr2(tb[i]);
for(int i = 0; i < M; i++) a[i] = sqr2(ta[i]);
mul(b, a);
for(int i = 0; i < N; i++) b[i] = tb[i];
for(int i = 0; i < M; i++) a[i] = sqr3(ta[i]);
mul(b, a);
int ans = 0;
for(int i = M - 1; i < N; i++)
if(!f[i]) ans++;
printf("%d
", ans);
for(int i = N - 1; i >= M - 1; i--)
if(!f[i])
printf("%d ", N - i);
return 0;
}
/*
3 7
a*b
aebr*ob
*/