POJ2387 Til the Cows Come Home【最短路 Dijkstra演算法】
Til the Cows Come Home
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 76034 | Accepted: 25315 |
Description
Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.
Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Input
* Line 1: Two integers: T and N
* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
Output
* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.
Sample Input
5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100
Sample Output
90
Hint
INPUT DETAILS:
There are five landmarks.
OUTPUT DETAILS:
Bessie can get home by following trails 4, 3, 2, and 1.
Source
問題連結:POJ2387 Til the Cows Come Home
問題描述:Bessie在n號結點,他想早點回到1號結點睡覺,給定n個結點,t條雙向邊,問Bessie回到1號結點的最短路徑是多少。
解題思路:使用dijkstra演算法,程式中使用vector實現圖的鄰接表
AC的C++程式:
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
using namespace std;
const int N=1005;
const int INF=0x3f3f3f3f;
int dist[N];//儲存各結點到源點的最短路徑
bool vis[N];//表示結點的最短路徑是否已經找到
//邊
struct Edge{
int v,c;//本結點到結點v的距離為c
Edge(int v,int c):v(v),c(c){}
};
struct Node{
int u,c;//結點u到源點的最短距離為c
Node(int u,int c):u(u),c(c){}
bool operator<(const Node &a)const
{
return c>a.c;
}
};
vector<Edge>g[N];//圖的鄰接表表示
void dijkstra(int s)
{
memset(vis,false,sizeof(vis));
memset(dist,INF,sizeof(dist));
dist[s]=0;
priority_queue<Node>q;
q.push(Node(s,0));
while(!q.empty()){
Node f=q.top();
q.pop();
int u=f.u;
if(!vis[u]){//如果還未使用結點u進行鬆弛操作
vis[u]=true;
for(int i=0;i<g[u].size();i++){//遍歷與結點u相連的結點
int v=g[u][i].v;
if(vis[v])//如果結點v的最短路徑已經找到則跳過
continue;
int cost=g[u][i].c;//結點u到結點v的距離
if(dist[v]>dist[u]+cost){//更新
dist[v]=dist[u]+cost;
q.push(Node(v,dist[v]));
}
}
}
}
}
int main()
{
int t,n,u,v,c;
scanf("%d%d",&t,&n);
while(t--){
scanf("%d%d%d",&u,&v,&c);
g[u].push_back(Edge(v,c));
g[v].push_back(Edge(u,c));
}
dijkstra(n);
printf("%d\n",dist[1]);
return 0;
}
相關文章
- POJ2387-Til the Cows Come Home
- 最短路dijkstra演算法演算法
- 最短路 - Dijkstra 演算法演算法
- 最短路徑之Dijkstra演算法演算法
- 最短路演算法之:Dijkstra 演算法演算法
- 最短路徑問題 (dijkstra演算法)演算法
- dijkstra最短路演算法模板(雙源)演算法
- 單源最短路徑-Dijkstra演算法演算法
- 最短路徑——Dijkstra演算法和Floyd演算法演算法
- 10行實現最短路演算法——Dijkstra演算法
- 0016:單源最短路徑(dijkstra演算法)演算法
- 最短路-樸素版Dijkstra演算法&堆優化版的Dijkstra演算法優化
- 最短路之Dijkstra
- 圖論-Dijkstra最短路圖論
- 最短路徑—Dijkstra(迪傑斯特拉)演算法演算法
- 一個人的旅行 (dijkstra演算法求最短路)演算法
- 最短路徑——dijkstra演算法程式碼(c語言)演算法C語言
- 如何在 Java 中實現 Dijkstra 最短路演算法Java演算法
- 最短路徑(dijkstra 與 Floyd)
- python實現Dijkstra演算法之 最短路徑問題Python演算法
- Returning Home(建圖、最短路)
- 一篇文章講透Dijkstra最短路徑演算法演算法
- 圖的最短路徑(Dijkstra | Floyd)
- 最短路-迪傑斯特拉(dijkstra)
- 最短路徑--dijkstra演算法、弗洛伊德(Floyd)演算法(帶路徑輸出)演算法
- [最短路徑問題]Dijkstra演算法(含還原具體路徑)演算法
- CodeForces_1422D Returning Home(最短路)
- 路徑規劃演算法 - 求解最短路徑 - Dijkstra(迪傑斯特拉)演算法演算法
- 最短路模板(堆最佳化Dijkstra)(自用
- 7-1 最短路徑之Dijkstra (10分)
- 最短路:求最長最短路
- 最短路 || 最長路 || 次短路
- Dijkstra演算法演算法
- Python 圖_系列之縱橫對比 Bellman-Ford 和 Dijkstra 最短路徑演算法Python演算法
- 貪心演算法Dijkstra演算法
- 最短路演算法演算法
- 全文劇透:Come And See |《最後的生還者2》
- 資料結構------最短路徑Dijkstra和最小生成樹Prim資料結構