Ambari,hadoop的配置,管理和監控專案入門
原文連結: http://hortonworks.com/kb/get-started-setting-up-ambari/
Ambari is 100% open source and included in HDP, greatly simplifying installation and initial configuration of Hadoop clusters. In this article we’ll be running through some installation steps to get started with Ambari. Most of the steps here are covered in the main HDP documentation here.
Ambari 是一款100%開源的,包含於HDP平臺,使得安裝和初始化hadoop叢集配置的專案。這篇文章我們將介紹Ambari的安裝步驟。這裡的大部分內容都包含在HDP的文件中。
The first order of business is getting Ambari Server itself installed. There are different approaches to this, but for the purposes of this short tour, we’ll assume Ambari is already installed on its own dedicated node somewhere or on one of the nodes on the (future) cluster itself. Instructions can be found under the installation steps linked above. Once Ambari Server is running, the hard work is actually done. Ambari simplifies cluster install and initial configuration with a wizard interface, taking care of it with but a few clicks and decisions from the end user. Hit http://<server_you_installed_ambari>:8080 and log in with admin/admin. Upon logging in, we are greeted with a user-friendly, wizard interface. Welcome to Apache Ambari! Name that cluster and let’s get going.
第一步安裝Ambari服務端,我們簡單的講,我們假設Ambari服務端已經成功的安裝在專有的節點上,這個節點是叢集的一部分。安裝方法在上面提到的連線裡面。當Ambari服務端執行的時候,負責的工作已經開始了。Ambari提供一個友好的互動入口來簡化叢集的安裝和配置,輕鬆的操作即可完成配置,具體是,登陸你的節點 http://ip:8080/ 然後使用 admin/admin 登陸系統。登陸後給叢集起個名字。
Now we can target hosts for installation with a full listing of host names or regular expressions (in situations when there are many nodes with similar names):
現在我們來配置機器列表(可以使用正則來匹配類似機器名的節點)
The next step is node registration, with Ambari doing all of the heavy lifting for us. An interface to track progress and drill down into log files is made available:
接下來是註冊節點,Ambari幫我們做了,提供一個介面可以檢視執行程式,
Upon registration completion, a detailed view of host checks run and options to re-run are also available:
當註冊完成後,檢測當前的機器狀態
Next, we select which high level components we want for the cluster. Dependency checks are all built in, so no worries about knowing which services are pre-requisites for others:
接下來,我們選擇我們需要安裝的模組,內建了依賴檢查
After service selection, node-specific service assignments are as simple as checking boxes:
接下來服務選擇,方便定製
This is where some minor typing may be required. Ambari allows simple configuration of the cluster via an easy to use interface, calling out required fields when necessary:
這裡只需要一些簡單的輸入.當你需要安裝服務的時候,Ambari支援在頁面上進行便捷的配置.
Once configuration has been completed, a review pane is displayed. This is a good point to pause and check for anything that requires adjustment. The Ambari wizard makes that simple. Things look fabulous here, though, so onwards!
當配置完成後,預覽將會被隱藏. 這是暫停並開始檢測依賴.Ambari引導使得這個顯得很簡單.雖然剛剛起步,但是看上去很贊.
Ambari will now execute the actual installation and necessary smoke tests on all nodes in the cluster. Sit back and relax, Ambari will perform the heavy lifting yet again:
Ambari現在開始支援在叢集的所有節點的真實環境下的安裝和一些必要的冒煙測試. 坐著放鬆嚇,讓Ambari開始做這些繁重的瑣事.
If you are itching to get involved, detailed drill-downs are available to monitor progress:
如果你想在檢查下,可以講這些過程在監控程式中檢視到.
Ambari tracks all progress and activities for you, dynamically updating the interface:
Ambari收集所有程式和活動資料,並動態的更新到頁面上:
And just like that, we have our Hortonworks Data Platform Cluster up and running, ready for that high priority POC:
如下看到的,你已經講HDP跑起來了,準備開始幹活...
Go forth and prosper, my friends. May the (big) data be with you.
讓我們開始和大資料共舞吧!
注意,轉載:http://www.cnblogs.com/scotoma/archive/2013/05/18/3085040.html
相關文章
- Golang專案的配置管理——Viper簡易入門配置Golang
- hadoop:spark-project專案的hadoop配置HadoopSparkProject
- Hadoop 專欄 - MapReduce 入門Hadoop
- INFORMIX的監控和管理命令ORM
- SpringBoot 監控、專案部署Spring Boot
- 專案管理必備——使用燃盡圖監控專案整體進度專案管理
- 呼叫鏈監控 CAT 之 入門
- 【原創】老谷專案管理MSN群專題討論--甲乙方專案監控(2009.7.14)專案管理
- Java 監控基礎 - 使用 JMX 監控和管理 Java 程式Java
- Spring入門(四):使用Maven管理Spring專案SpringMaven
- 五、自定義Zabbix監控專案
- 如何監控工程專案進度?
- 在開源領域,有一些庫和工具專門用於 GPU 監控和管理。以下是幾個常見的開源 GPU 監控庫:GPU
- Prometheus監控系統入門與部署Prometheus
- IntelliJ IDEA配置與搭建web專案入門使用IntelliJIdeaWeb
- 防火門監控系統在某音樂廳專案上的應用
- RabbitMQ實戰:介面管理和監控MQ
- 基於Hadoop框架實現的對歷年四級單詞的詞頻分析(入門級Hadoop專案)Hadoop框架
- maven 專案的建立入門Maven
- springboot-admin對springboot專案監控Spring Boot
- Hadoop快速入門Hadoop
- 踩坑指南:入門OpenTenBase之監控篇
- 監控神器:Prometheus 輕鬆入門,真香!(上篇)Prometheus
- 監控神器:Prometheus 輕鬆入門,真香!(下篇)Prometheus
- springCloud入門學習--Hystrix狀態監控SpringGCCloud
- 前端監控進階篇 — Sentry 監控 Next.js 專案實踐前端JS
- HDFS監控背後那些事兒,構建Hadoop監控共同體Hadoop
- Katana 專案入門
- Kotlin專案入門Kotlin
- Laravel 專案模組化管理和子域名配置Laravel
- golang 快速入門 [7.1]-專案與依賴管理-gopathGolang
- Git | Git入門,成為專案管理大師(一)Git專案管理
- 專案管理系統全解析:從入門到精通專案管理
- 配置 Prometheus 伺服器監控和 Grafana 看板Prometheus伺服器Grafana
- Hadoop入門系列(2)-安裝HadoopHadoop
- 常見的七種Hadoop和Spark專案案例HadoopSpark
- 菜鳥的Hadoop快速入門Hadoop
- Hadoop的HDFS架構入門Hadoop架構
- 從零入門專案整合Karate和Jacoco,配置測試程式碼覆蓋率