MapReduce的基本思想
先舉一個簡單的例子: 打個比方我們有三個人鬥地主, 要數數牌夠不夠, 一種最簡單的方法可以找一個人數數是不是有54張(傳統單機計算); 還可以三個人各分一摞牌數各自的(Map階段), 三個人的總數加起來彙總(Reduce階段).
所以MapReduce的思想即: "分治"+"彙總". 大資料量下, 一臺機器處理不了的資料, 就用多臺機器, 以分散式叢集的形式來處理.
關於Map與Reduce有很多文章將這兩個詞直譯為對映和規約, 其實Map的思想就是各自負責一塊實行分治, Reduce的思想即: 將分治的結果彙總. 幹嘛翻譯的這麼生硬呢(故意讓人覺得大資料很神祕麼?)
MapReduce的程式設計入門
還是很簡單的模式: 包含8個步驟
我們那最簡單的單詞計數來舉例(號稱大資料的HelloWorld), 先讓大家跑起來看看現象再說.
按照MapReduce思想有兩個主要步驟, Mapper與Reducer, 剩餘的東西Hadoop都幫助我們實現了, 先入門實踐再瞭解原理;
MapReducer有兩種執行模式: 1,叢集模式(生產環境);2,本地模式(試驗學習)
前提:
1, 下載一個Hadoop的安裝包, 放到本地, 並配置到環境變數裡面;
2, 下載一個hadoop.dll放到hadoop的bin目錄下
建立Maven工程, 匯入依賴
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.10.1</version>
</dependency>
資料檔案D:\Source\data\demo_result1\xx.txt
hello,world,hadoop
hive,sqoop,flume,hello
kitty,tom,jerry,world
hadoop
開始編寫程式碼
第一步, 建立Mapper類
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class BaseMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] words = value.toString().split(",");
Text keyout = new Text();
LongWritable valueout = new LongWritable(1);
for (String word : words) {
keyout.set(word);
context.write(keyout, valueout);
}
}
}
第二步, 建立Reducer類
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class BaseReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
int x = 0;
for (LongWritable value : values) {
x += value.get();
}
context.write(key, new LongWritable(x));
}
}
第三步, 建立Job啟動類
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class MainJob extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
Job job = Job.getInstance(super.getConf(), MainJob.class.getName());
//叢集執行時候: 要打包
job.setJarByClass(MainJob.class);
//1, 讀取輸入檔案解析類
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job,new Path("D:\\Source\\data\\data_in"));
//2, 設定Mapper類
job.setMapperClass(BaseMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//3, 設定shuffle階段的分割槽, 排序, 規約, 分組
//7, 設定Reducer類
job.setReducerClass(BaseReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
//8, 設定檔案輸出類以及輸出地址
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job,new Path("D:\\Source\\data\\demo_result1"));
//啟動MapReduceJob
boolean completion = job.waitForCompletion(true);
return completion?0:1;
}
public static void main(String[] args) {
MainJob mainJob = new MainJob();
try {
Configuration configuration = new Configuration();
configuration.set("mapreduce.framework.name","local");
configuration.set("yarn.resourcemanager.hostname","local");
int run = ToolRunner.run(configuration, mainJob, args);
System.exit(run);
} catch (Exception e) {
e.printStackTrace();
}
}
}