Cozmo人工智慧機器人SDK使用筆記(8)-應用部分apps
Cozmo應用部分有7個專案示例。
1. 3d viewer
3d Viewer示例並可以遠端遙控。
這是一個如何將3D檢視器與程式配合使用的示例,3D檢視器和控制元件將自動執行。
注意asyncio!
import asyncio
import cozmo
async def cozmo_program(robot: cozmo.robot.Robot):
while True:
await asyncio.sleep(1)
cozmo.robot.Robot.drive_off_charger_on_connect = False
cozmo.run_program(cozmo_program, use_3d_viewer=True, use_viewer=True)
2. cli
Cozmo的命令列介面
這是將Cozmo與基於ipython的命令列介面整合的示例。
注意sys!
import sys
try:
from IPython.terminal.embed import InteractiveShellEmbed
from IPython.terminal.prompts import Prompts, Token
except ImportError:
sys.exit('Cannot import from ipython: Do `pip3 install ipython` to install')
import cozmo
usage = ('This is an IPython interactive shell for Cozmo.\n'
'All commands are executed within cozmo\'s running program loop.\n'
'Use the [tab] key to auto-complete commands, and see all available methods.\n'
'All IPython commands work as usual. See below for some useful syntax:\n'
' ? -> Introduction and overview of IPython\'s features.\n'
' object? -> Details about \'object\'.\n'
' object?? -> More detailed, verbose information about \'object\'.')
# Creating IPython's history database on the main thread
ipyshell = InteractiveShellEmbed(banner1='\nWelcome to the Cozmo Shell',
exit_msg='Goodbye\n')
def cozmo_program(robot: cozmo.robot.Robot):
'''Invoke the ipython shell while connected to cozmo'''
default_log_level = cozmo.logger.level
cozmo.logger.setLevel('WARN')
ipyshell(usage)
cozmo.logger.setLevel(default_log_level)
cozmo.run_program(cozmo_program, use_3d_viewer=True, use_viewer=True)
3. color finder
Cozmo環顧四周,跟蹤指定顏色。
在Cozmo附近放一個網球,看看是否可以跟蹤!
程式啟動時,Cozmo會四處尋找黃色。
點選立方體亮黃色可將Cozmo的目標顏色切換為黃色,藍色,紅色和綠色等。
點選閃爍的白色立方體,讓觀看者顯示Cozmo的畫素化攝像機檢視。
import asyncio
import functools
import math
import numpy
import sys
import cozmo
from cozmo.util import degrees, distance_mm, radians, speed_mmps, Vector2
from cozmo.lights import Color, Light
try:
from PIL import Image, ImageColor, ImageDraw, ImageStat
except ImportError:
sys.exit('Cannot import from PIL: Do `pip3 install --user Pillow` to install')
# Set ENABLE_COLOR_BALANCING to False to skip the color_balance step
ENABLE_COLOR_BALANCING = True
# map_color_to_light (dict): maps each color name with its cozmo.lights.Light value.
# Red, green, and blue lights are already defined as constants in lights.py,
# but we need to define our own custom Light for yellow.
map_color_to_light = {
'green' : cozmo.lights.green_light,
'yellow' : Light(Color(name='yellow', rgb = (255, 255, 0))),
'blue' : cozmo.lights.blue_light,
'red' : cozmo.lights.red_light
}
# hsv_color_ranges (dict): map of color names to regions in HSV space.
# Instead of defining a color as a single (H, S, V) point,
# colors are defined with a minimum and maximum value for H, S, and V.
# For example, a point with (H, S, V) = (200.0, 0.8, 0.95) falls entirely in the 'blue' region,
# because 180.0 < 200.0 < 245.0, 0 < 0.8 < 1.0, and 0 < 0.95 < 1.0.
# A point with (H, S, V) = (88.0, 0.4, 0.9) does not fall exactly in one color region.
# But applying hsv_color_distance_sqr between this color and all the colors in hsv_color_ranges
# will show that (88.0, 0.4, 0.9) is closest to the 'green' region.
hsv_color_ranges = {
'red' : (-20.0, 20.0, 0.5, 1.0, 0.5, 1.0),
'green' : (90.0, 155.0, 0.5, 1.0, 0.5, 1.0),
'blue' : (180.0, 245.0, 0.5, 1.0, 0.5, 1.0),
'yellow' : (40.0, 80.0, 0.5, 1.0, 0.5, 1.0),
'white' : (0.0, 360.0, 0.0, 0.2, 0.9, 1.0),
'black' : (0.0, 360.0, 0.0, 0.1, 0.0, 0.2)
}
def hsv_color_distance_sqr(color, color_range):
'''Determines the squared euclidean distance between color and color_range.
Note that we normalize h, minH, and maxH so that they also fall between 0 and 1, instead of 0 and 360.
Args:
color (float, float, float): the H, S, V values of the color
color_range(float, float, float, float, float, float): the minimum and maximum for H, S, and V for the color range
Returns:
squared distance between color and color_range,
which is the sum of the squared distances from
the H, S, V values to their respective ranges
'''
h, s, v = color
minH, maxH, minS, maxS, minV, maxV = color_range
h_dist_sqr = 0
s_dist_sqr = 0
v_dist_sqr = 0
if h < minH:
h_dist_sqr = (minH - h) ** 2
elif h > maxH:
h_dist_sqr = (maxH - h) ** 2
if s < minS:
s_dist_sqr = (minS - s) ** 2
elif s > maxS:
s_dist_sqr = (maxS - s) ** 2
if v < minV:
v_dist_sqr = (minV - v) ** 2
elif v > maxV:
v_dist_sqr = (maxV - v) ** 2
sum_dist_sqr = h_dist_sqr + s_dist_sqr + v_dist_sqr
return sum_dist_sqr
def color_balance(image):
'''Adjusts the color data of an image so that the average R, G, B values across the entire image end up equal.
This is called a 'gray-world' algorithm, because the colors
with equal R, G, B values fall along the grayscale.
https://web.stanford.edu/~sujason/ColorBalancing/grayworld.html
Args:
image (PIL image): the image being color-balanced
Returns
the PIL image with balanced color distribution
'''
image_array = image_to_array(image)
image_array = image_array.transpose(2, 0, 1).astype(numpy.uint32)
average_g = numpy.average(image_array[1])
image_array[0] = numpy.minimum(image_array[0] * (average_g / numpy.average(image_array[0])), 255)
image_array[2] = numpy.minimum(image_array[2] * (average_g / numpy.average(image_array[2])), 255)
return array_to_image(image_array.transpose(1, 2, 0).astype(numpy.uint8))
def image_to_array(image):
'''Converts PIL image to image array.'''
image_array = numpy.asarray(image)
image_array.flags.writeable = True
return image_array
def array_to_image(image_array):
'''Coverts image array to PIL image.'''
return Image.fromarray(numpy.uint8(image_array))
def rgb_to_hsv(r, g, b):
'''Converts an RGB value to its corresponding HSV value.
Args:
r (int): the amount of red in the color, between 0 and 255
g (int): the amount of green in the color, between 0 and 255
b (int): the amount of blue in the color, between 0 and 255
Returns:
tuple of floats (h, s, v) representing the HSV value of the color
h represents an angle, between 0 and 360 degrees
s represents the saturation, between 0 and 1
v represents the brightness, between 0 and 1
'''
r_normalized = r / 255.0
g_normalized = g / 255.0
b_normalized = b / 255.0
max_normalized_val = max(r_normalized, g_normalized, b_normalized)
min_normalized_val = min(r_normalized, g_normalized, b_normalized)
delta = max_normalized_val - min_normalized_val
h = 0
s = 0
v = max_normalized_val
if delta != 0:
if max_normalized_val == r_normalized:
h = 60.0 * ((g_normalized - b_normalized) / delta)
elif max_normalized_val == g_normalized:
h = 60.0 * (((b_normalized - r_normalized) / delta) + 2)
else:
h = 60.0 * (((r_normalized - g_normalized) / delta) + 4)
if h < 0:
h += 360
if max_normalized_val == 0:
s = 0
else:
s = delta / max_normalized_val
return (h, s, v)
POSSIBLE_COLORS_TO_FIND = ['green', 'yellow', 'blue', 'red']
LOOK_AROUND_STATE = 'look_around'
FOUND_COLOR_STATE = 'found_color'
DRIVING_STATE = 'driving'
ANNOTATOR_WIDTH = 640.0
ANNOTATOR_HEIGHT = 480.0
DOWNSIZE_WIDTH = 32
DOWNSIZE_HEIGHT = 24
class ColorFinder(cozmo.annotate.Annotator):
'''Cozmo looks around and drives after colors.
Cozmo's camera view is approximated into a matrix of colors.
Cozmo will look around for self.color_to_find, and once it is spotted,
he will drive in the direction of that color.
Args:
robot (cozmo.robot.Robot): instance of the robot connected from run_program.
'''
def __init__(self, robot: cozmo.robot.Robot):
self.robot = robot
self.robot.camera.image_stream_enabled = True
self.robot.camera.color_image_enabled = True
self.fov_x = self.robot.camera.config.fov_x
self.fov_y = self.robot.camera.config.fov_y
self.robot.add_event_handler(cozmo.objects.EvtObjectTapped, self.on_cube_tap)
self.robot.add_event_handler(cozmo.world.EvtNewCameraImage, self.on_new_camera_image)
self.color_selector_cube = None # type: LightCube
self.color_to_find = 'yellow'
self.color_to_find_index = POSSIBLE_COLORS_TO_FIND.index(self.color_to_find)
self.grid_cube = None # type: LightCube
self.robot.world.image_annotator.add_annotator('color_finder', self)
self.robot.world.image_annotator.annotation_enabled = False
self.enabled = True
self.pixel_matrix = MyMatrix(DOWNSIZE_WIDTH, DOWNSIZE_HEIGHT)
self.amount_turned_recently = radians(0)
self.moving_threshold = radians(12)
self.state = LOOK_AROUND_STATE
self.look_around_behavior = None # type: LookAroundInPlace behavior
self.drive_action = None # type: DriveStraight action
self.tilt_head_action = None # type: SetHeadAngle action
self.rotate_action = None # type: TurnInPlace action
self.lift_action = None # type: SetLiftHeight action
self.last_known_blob_center = (DOWNSIZE_WIDTH/2, DOWNSIZE_HEIGHT/2) # initially set to center screen
self.white_balance_cube = None # type: LightCube
self.adjustment = None
def apply(self, image, scale):
'''Draws a pixelated grid of Cozmo's approximate camera view onto the viewer window.
Also draws a marker showing the center of the largest blob that matches the color_to_find
WM and HM are multipliers that scale the dimensions of the annotated squares
based on DOWNSIZE_WIDTH and DOWNSIZE_HEIGHT
'''
d = ImageDraw.Draw(image)
WM = ANNOTATOR_WIDTH/DOWNSIZE_WIDTH
HM = ANNOTATOR_HEIGHT/DOWNSIZE_HEIGHT
for i in range(DOWNSIZE_WIDTH):
for j in range(DOWNSIZE_HEIGHT):
pt1 = Vector2(i * WM, j * HM)
pt2 = Vector2(i * WM, (j + 1) * HM)
pt3 = Vector2((i + 1) * WM, (j + 1) * HM)
pt4 = Vector2((i + 1) * WM, j * HM)
points_seq = (pt1, pt2, pt3, pt4)
cozmo.annotate.add_polygon_to_image(image, points_seq, 1.0, 'green', self.pixel_matrix.at(i, j).value)
text = cozmo.annotate.ImageText('Looking for {}'.format(self.color_to_find), color = 'white')
text.render(d, (0, 0, image.width, image.height))
if self.state != LOOK_AROUND_STATE:
x, y = self.last_known_blob_center
pt1 = Vector2((x + 0.5) * WM, (y + 0.5) * HM)
pt2 = Vector2((x + 1.5) * WM, (y + 0.5) * HM)
pt3 = Vector2((x + 1.5) * WM, (y + 1.5) * HM)
pt4 = Vector2((x + 0.5) * WM, (y + 1.5) * HM)
points_seq = (pt1, pt2, pt3, pt4)
cozmo.annotate.add_polygon_to_image(image, points_seq, 1.0, 'black', 'gold')
def on_cube_tap(self, evt, obj, **kwargs):
'''The blinking white cube switches the viewer between normal mode and pixel mode.
The other illuminated cube toggles self.color_to_find.
'''
if obj.object_id == self.color_selector_cube.object_id:
self.toggle_color_to_find()
elif obj.object_id == self.grid_cube.object_id:
self.robot.world.image_annotator.annotation_enabled = not self.robot.world.image_annotator.annotation_enabled
elif obj.object_id == self.white_balance_cube.object_id:
self.white_balance()
def toggle_color_to_find(self):
'''Sets self.color_to_find to the next color in POSSIBLE_COLORS_TO_FIND.'''
self.color_to_find_index += 1
if self.color_to_find_index == len(POSSIBLE_COLORS_TO_FIND):
self.color_to_find_index = 0
self.color_to_find = POSSIBLE_COLORS_TO_FIND[self.color_to_find_index]
self.color_selector_cube.set_lights(map_color_to_light[self.color_to_find])
def on_new_camera_image(self, evt, **kwargs):
'''Processes the blobs in Cozmo's view, and determines the correct reaction.'''
downsized_image = self.get_low_res_view()
if ENABLE_COLOR_BALANCING:
downsized_image = color_balance(downsized_image)
self.update_pixel_matrix(downsized_image)
blob_detector = BlobDetector(self.pixel_matrix, self.color_to_find)
blob_center = blob_detector.get_blob_center()
if blob_center:
self.last_known_blob_center = blob_center
blob_size = blob_detector.get_blob_size()
if self.state == LOOK_AROUND_STATE:
self.state = FOUND_COLOR_STATE
if self.look_around_behavior:
self.look_around_behavior.stop()
self.look_around_behavior = None
self.on_finding_a_blob(blob_center, blob_size)
else:
self.robot.set_backpack_lights_off()
self.abort_actions(self.drive_action)
self.state = LOOK_AROUND_STATE
def white_balance(self):
image = self.robot.world.latest_image.raw_image
self.adjustment = ImageStat.Stat(image).mean
def update_pixel_matrix(self, downsized_image):
'''Updates self.pixel_matrix with the colors from the current camera view.
Args:
downsized_image (PIL image): the low-resolution version of self.robot.world.latest_image
'''
for i in range(self.pixel_matrix.num_cols):
for j in range(self.pixel_matrix.num_rows):
r, g, b = downsized_image.getpixel((i, j))
self.pixel_matrix.at(i, j).set(self.approximate_color_of_pixel(r, g, b))
self.pixel_matrix.fill_gaps()
def approximate_color_of_pixel(self, r, g, b):
'''Returns the approximated color of the RGB value of a pixel.
Args:
r (int): the amount of red in the pixel
g (int): the amount of green in the pixel
b (int): the amount of blue in the pixel
Returns:
string specifying the name of the color range closest to the input color
'''
min_distance = sys.maxsize
closest_color = ''
h, s, v = rgb_to_hsv(r, g, b)
if h > 340.0:
h -= 360.0
for color_name, color_range in hsv_color_ranges.items():
d = hsv_color_distance_sqr((h, s, v), color_range)
if d < min_distance:
min_distance = d
closest_color = color_name
return closest_color
def get_low_res_view(self):
'''Downsizes Cozmo's camera view to the specified dimensions.
Returns:
PIL image downsized to low-resolution version of Cozmo's camera view.
'''
image = self.robot.world.latest_image.raw_image
downsized_image = image.resize((DOWNSIZE_WIDTH, DOWNSIZE_HEIGHT), resample = Image.LANCZOS)
return downsized_image
def on_finding_a_blob(self, blob_center, blob_size):
'''Determines whether Cozmo should continue to look at the blob, or drive towards it.
Args:
blob_center (int, int): coordinates of the blob's center in self.pixel_matrix
blob_size (int): number of pixels in the blob
'''
self.robot.set_center_backpack_lights(map_color_to_light[self.color_to_find])
if blob_size > (self.pixel_matrix.size/4):
self.lift_action = self.robot.set_lift_height(0.0, in_parallel=True)
x, y = blob_center
# 'fov' stands for 'field of view'. This is the angle amount
# that Cozmo can see to the edges of his camera view.
amount_to_move_head = radians(self.fov_y.radians*(.5-float(y)/DOWNSIZE_HEIGHT))
amount_to_rotate = radians(self.fov_x.radians*(.5-float(x)/DOWNSIZE_WIDTH))
if self.moved_too_far_from_center(amount_to_move_head, amount_to_rotate):
self.state = FOUND_COLOR_STATE
if self.state != DRIVING_STATE:
self.turn_toward_blob(amount_to_move_head, amount_to_rotate)
else:
self.drive_toward_color_blob()
def moved_too_far_from_center(self, amount_to_move_head, amount_to_rotate):
'''Decides whether the center of the blob is too far from the center of Cozmo's view.
Args:
amount_to_move_head (cozmo.util.Angle):
the perceived vertical distance of the blob from center-screen
amount_to_rotate (cozmo.util.Angle):
the perceived horizontal distance of the blob from center-screen
Returns:
bool specifying whether the object is too far from center-screen
'''
too_far_vertical = (amount_to_move_head.abs_value > self.fov_y/4)
too_far_horizontal = (amount_to_rotate.abs_value > self.fov_x/4)
too_far = too_far_vertical or too_far_horizontal
return too_far
def turn_toward_blob(self, amount_to_move_head, amount_to_rotate):
'''Calls actions that tilt Cozmo's head and rotate his body toward the color.
Args:
amount_to_move_head (cozmo.util.Angle):
the perceived vertical distance of the blob from center-screen
amount_to_rotate (cozmo.util.Angle):
the perceived horizontal distance of the blob from center-screen
'''
self.abort_actions(self.tilt_head_action, self.rotate_action, self.drive_action)
new_head_angle = self.robot.head_angle + amount_to_move_head
self.tilt_head_action = self.robot.set_head_angle(new_head_angle, warn_on_clamp=False, in_parallel=True)
self.rotate_action = self.robot.turn_in_place(amount_to_rotate, in_parallel=True)
if self.state == FOUND_COLOR_STATE:
self.amount_turned_recently += amount_to_move_head.abs_value + amount_to_rotate.abs_value
def drive_toward_color_blob(self):
'''Drives straight once prior actions have been cancelled.'''
self.abort_actions(self.tilt_head_action, self.rotate_action)
if self.should_start_new_action(self.drive_action):
self.drive_action = self.robot.drive_straight(distance_mm(500), speed_mmps(300), should_play_anim=False, in_parallel=True)
if self.should_start_new_action(self.lift_action):
self.lift_action = self.robot.set_lift_height(1.0, in_parallel=True)
def turn_toward_last_known_blob(self):
'''Turns toward the coordinates of the last recorded blob in memory.
amount_to_rotate is multiplied to overshoot the object rather than undershoot it.
'''
x, y = self.last_known_blob_center
amount_to_move_head = radians(self.fov_y.radians*(.5-y/DOWNSIZE_HEIGHT))
amount_to_rotate = radians(self.fov_x.radians*(.5-x/DOWNSIZE_WIDTH)) * 4
self.turn_toward_blob(amount_to_move_head, amount_to_rotate)
def abort_actions(self, *actions):
'''Aborts the input actions if they are currently running.
Args:
*actions (list): the list of actions
'''
for action in actions:
if action != None and action.is_running:
action.abort()
def should_start_new_action(self, action):
''' Whether the action should be started.
Args:
action (action): the action that should or should not be started
Returns:
bool specifying whether the action is not running or is currently None
'''
should_start = ((action == None) or (not action.is_running))
return should_start
async def start_lookaround(self):
'''Turns to a likely spot for a blob to be, then starts self.look_around_behavior.'''
if self.look_around_behavior == None or not self.look_around_behavior.is_active:
self.turn_toward_last_known_blob()
await asyncio.sleep(.5)
if self.state == LOOK_AROUND_STATE: # state may have changed due to turn_toward_last_known_blob
self.abort_actions(self.tilt_head_action, self.rotate_action, self.drive_action)
self.look_around_behavior = self.robot.start_behavior(cozmo.behavior.BehaviorTypes.LookAroundInPlace)
def turn_on_cubes(self):
'''Illuminates the two cubes that control self.color_to_find and set the viewer display.'''
self.color_selector_cube.set_lights(map_color_to_light[self.color_to_find])
self.grid_cube.set_lights(cozmo.lights.white_light.flash())
def cubes_connected(self):
'''Returns true if Cozmo connects to both cubes successfully.'''
self.color_selector_cube = self.robot.world.get_light_cube(cozmo.objects.LightCube1Id)
self.grid_cube = self.robot.world.get_light_cube(cozmo.objects.LightCube2Id)
self.white_balance_cube = self.robot.world.get_light_cube(cozmo.objects.LightCube3Id)
return not (self.color_selector_cube == None or self.grid_cube == None or self.white_balance_cube == None)
async def run(self):
'''Program runs until typing CRTL+C into Terminal/Command Prompt,
or by closing the viewer window.
'''
if not self.cubes_connected():
print('Cubes did not connect successfully - check that they are nearby. You may need to replace the batteries.')
return
self.turn_on_cubes()
await self.robot.drive_straight(distance_mm(100), speed_mmps(50), should_play_anim = False).wait_for_completed()
# Updates self.state and resets self.amount_turned_recently every 1 second.
while True:
await asyncio.sleep(1)
if self.state == LOOK_AROUND_STATE:
await self.start_lookaround()
if self.state == FOUND_COLOR_STATE and self.amount_turned_recently < self.moving_threshold:
self.state = DRIVING_STATE
self.amount_turned_recently = radians(0)
class BlobDetector():
'''Determine where the regions of the specified color reside in a matrix.
We use this class to find the areas of color_to_find in the pixel_matrix of the ColorFinder class.
Args:
matrix (int[][]) : the pixel_matrix from ColorFinder
keylist (list of strings): the list of possible_colors_to_find from ColorFinder
color_to_find (string): the color of the blobs Cozmo is looking for
'''
def __init__(self, matrix, color_to_find):
self.matrix = matrix
self.color_to_find = color_to_find
self.num_blobs = 1
self.blobs_dict = {}
self.keys = MyMatrix(self.matrix.num_cols, self.matrix.num_rows)
self.make_blobs_dict()
self.filter_blobs_dict_by_size(5) # prevents a lot of irrelevant blobs from being processed
self.largest_blob_size = 0
def make_blobs_dict(self):
'''Using a connected components algorithm, constructs a dictionary
that maps a blob to the points of the matrix that make up that blob.
Only creates a blob if the point's color matches self.color_to_find.
Key and Value types of the dictionary:
Key : int specifying self.num_blobs at the time the blob was first created.
Value : the list of points in the blob.
'''
for i in range(self.matrix.num_cols):
for j in range(self.matrix.num_rows):
if self.matrix.at(i, j).value == self.color_to_find:
matches_left = self.matches_blob_left(i, j)
matches_above = self.matches_blob_above(i, j)
should_merge = matches_left and matches_above and self.above_and_left_blobs_are_different(i, j)
if should_merge:
self.merge_up_and_left_blobs(i, j)
elif matches_left:
self.join_blob_left(i, j)
elif matches_above:
self.join_blob_above(i, j)
else:
self.make_new_blob_at(i, j)
def matches_blob_above(self, i, j):
'''Returns true if the current point matches the point above.
Args:
i (int): the x-coordinate in self.matrix
j (int): the y-coordinate in self.matrix
Returns:
bool specifying whether the current point matches the point above.
'''
if j == 0:
return False
matches_above = (self.matrix.at(i, j-1).value == self.color_to_find)
return matches_above
def matches_blob_left(self, i, j):
'''Returns true if the current point matches the point to the left.
Args:
i (int): the x-coordinate in self.matrix
j (int): the y-coordinate in self.matrix
Returns:
bool specifying whether the current point matches the point to the left.
'''
if i == 0:
return False
matches_left = (self.matrix.at(i-1, j).value == self.color_to_find)
return matches_left
def above_and_left_blobs_are_different(self, i, j):
'''Returns true if the point above and the point to the left belong to different blobs.
Args:
i (int): the x-coordinate in self.matrix
j (int): the y-coordinate in self.matrix
Returns:
bool specifying whether the above blob and the left blob have different keys in self.keys
'''
if i == 0 or j == 0:
return False
above_and_left_different = (self.keys.at(i-1, j).value != self.keys.at(i, j-1).value)
return above_and_left_different
def make_new_blob_at(self, i, j):
'''Adds a new blob to self.blob_dict
whose list of points initially contains only the current point.
Args:
i (int): the x-coordinate in self.matrix
j (int): the y-coordinate in self.matrix
'''
self.blobs_dict[self.num_blobs] = [(i, j)]
self.keys.at(i, j).set(self.num_blobs)
self.num_blobs += 1
def join_blob_above(self, i, j):
'''Adds current point to the blob above.
Args:
i (int): the x-coordinate in self.matrix
j (int): the y-coordinate in self.matrix
'''
above_blob_key = self.keys.at(i, j-1).value
self.blobs_dict[above_blob_key].append((i, j))
self.keys.at(i, j).set(above_blob_key)
def join_blob_left(self, i, j):
'''Adds current point to the blob to the left.
Args:
i (int): the x-coordinate in self.matrix
j (int): the y-coordinate in self.matrix
'''
left_blob_key = self.keys.at(i-1, j).value
self.blobs_dict[left_blob_key].append((i, j))
self.keys.at(i, j).set(left_blob_key)
def merge_up_and_left_blobs(self, i, j):
'''Adds current point and points from the above blob into left blob,
then removes the above blob from self.blob_dict
Args:
i (int): the x-coordinate in self.matrix
j (int): the y-coordinate in self.matrix
'''
above_blob_key = self.keys.at(i, j-1).value
left_blob_key = self.keys.at(i-1, j).value
above_blob_points = self.blobs_dict[above_blob_key]
left_blob_points = self.blobs_dict[left_blob_key]
for point in above_blob_points:
self.blobs_dict[left_blob_key].append(point)
self.blobs_dict[left_blob_key].append((i, j))
self.keys.at(i, j).set(left_blob_key)
for (x, y) in above_blob_points:
self.keys.at(x, y).set(left_blob_key)
self.blobs_dict.pop(above_blob_key)
def filter_blobs_dict_by_size(self, n):
'''Filters out small blobs from self.blobs_dict.
Args:
n (int): the number of points required of a blob to stay in self.blobs_dict
'''
self.blobs_dict = dict((blob, list_of_points) for blob, list_of_points in self.blobs_dict.items() if len(list_of_points) >= n)
def get_largest_blob_key(self):
'''Finds the key of the largest blob.
Returns:
int specifying the key of the largest blob with that color, or None if no such blob exists
'''
largest_blob_key = None
values = self.blobs_dict.values()
if len(values) > 0:
longest_points_list = functools.reduce(lambda largest, current: largest if (largest > current) else current, values)
sample_x, sample_y = longest_points_list[0]
largest_blob_key = self.keys.at(sample_x, sample_y).value
self.largest_blob_size = len(self.blobs_dict[largest_blob_key])
return largest_blob_key
def get_blob_center(self):
'''Approximates the coordinates of the center of the largest blob.
Returns:
(int, int) specifying the center of the largest blob,
or None if self.get_largest_blob_key() returns None
'''
blob_center = None
largest_blob_key = self.get_largest_blob_key()
if largest_blob_key:
xs = []
ys = []
for (x, y) in self.blobs_dict[largest_blob_key]:
xs.append(x)
ys.append(y)
average_x = float(sum(xs))/len(xs)
average_y = float(sum(ys))/len(ys)
blob_center = (int(average_x), int(average_y))
return blob_center
def get_blob_size(self):
'''Gets the number of pixels in the largest blob.
Returns:
int: The size, in pixels, of the largest blob
'''
return self.largest_blob_size
class MyMatrix():
'''A custom class to get dimensions, values, and neighboring values of the pixel_matrix.
Args:
num_cols (int): the number of columns in the matrix, specified in ColorFinder as downsize_width
num_rows (int): the number of rows in the matrix, specified in ColorFinder as downsize_height
'''
def __init__(self, num_cols, num_rows):
self.num_cols = num_cols
self.num_rows = num_rows
self._matrix = [[MatrixValueContainer() for _ in range(self.num_rows)] for _ in range(self.num_cols)]
self.size = self.num_cols * self.num_rows
def at(self, i, j):
'''Gets the desired MatrixValueContainer object.
Args:
i (int): the x-coordinate in self
j (int): the y-coordinate in self
Returns:
the MatrixValueContainer at the specified coordinates
'''
return self._matrix[i][j]
def fill_gaps(self):
'''Fills in squares in self._matrix that meet the condition in the surrounded method.
Ignores the surrounding value if it is 'white' or 'black' to give preference to red, blue, green, and yellow.
'''
for i in range(self.num_cols):
for j in range(self.num_rows):
val = self.surrounded(i, j)
if val != None and val != 'white' and val != 'black':
self.at(i, j).set(val)
def surrounded(self, i, j):
'''Checks if a point is surrounded by at least 3 points of the same value.
Args:
i (int): the x-coordinate in self._matrix
j (int): the y-coordinate in self._matrix
Returns:
the surrounding value if the condition is True, otherwise returns None
When used in the context of ColorFinder, the surrounding value would be the string
specifying the name of the color surrounding this square.
'''
if i != 0 and i != self.num_cols-1 and j != 0 and j != self.num_rows-1:
left_value, up_value, right_value, down_value = self.get_neighboring_values(i, j)
if left_value == up_value and left_value == right_value:
return left_value
if left_value == up_value and left_value == down_value:
return left_value
if left_value == right_value and left_value == down_value:
return left_value
if right_value == up_value and right_value == down_value:
return right_value
return None
def get_neighboring_values(self, i, j):
'''Returns the values in the four surrounding MatrixValueContainers.
Args:
i (int): the x-coordinate in self._matrix
j (int): the y-coordinate in self._matrix
Returns:
A four-tuple containing (left_value, up_value, right_value, and down_value)
'''
return (self.at(i-1, j), self.at(i, j-1), self.at(i + 1, j), self.at(i, j + 1))
class MatrixValueContainer():
'''Simple container for values in a MyMatrix object.
This class is intended to clean the syntax of setting
a new value in the MyMatrix object.
So we replace this:
matrix.get_value(i, j)
matrix.set_value(i, j, new_value)
with this:
matrix.at(i, j).value
matrix.at(i, j).set(new_value)
'''
def __init__(self):
self.value = None
def set(self, new_value):
self.value = new_value
async def cozmo_program(robot: cozmo.robot.Robot):
color_finder = ColorFinder(robot)
await color_finder.run()
cozmo.robot.Robot.drive_off_charger_on_connect = True
cozmo.run_program(cozmo_program, use_viewer = True, force_viewer_on_top = True)
4. desk security
Cozmo桌面巡邏
Cozmo巡邏辦公桌,尋找未知的面孔,並報告給你。
import asyncio
from random import randint
import sys
import time
import cozmo
from cozmo.util import degrees, distance_mm, speed_mmps
#: The name that the owner's face is enrolled as (i.e. your username in the app)
#: When that face is seen, Cozmo will assume no other faces currently seen are intruders
OWNER_FACE_ENROLL_NAME = ""
if OWNER_FACE_ENROLL_NAME == "":
sys.exit("You must fill in OWNER_FACE_ENROLL_NAME")
class DeskSecurityGuard:
'''Container for Security Guard status'''
def __init__(self):
self.owner_name = OWNER_FACE_ENROLL_NAME
self.is_armed = True
self.time_first_observed_intruder = None
self.time_last_observed_intruder = None
self.time_first_observed_owner = None
self.time_last_observed_owner = None
self.time_last_suspicious = None
self.time_last_uploaded_photo = None
self.time_last_announced_intruder = None
self.time_last_pounced_at_intruder = None
self.time_last_announced_owner = None
def is_investigating_intruder(self):
'''Has an unknown face recently been seen?'''
return self.time_first_observed_intruder is not None
def has_confirmed_intruder(self):
'''The robot has seen an intruder for long enough that it's pretty sure it's not the owner.'''
if self.time_first_observed_intruder:
elapsed_time = time.time() - self.time_first_observed_intruder
return elapsed_time > 2.0
return False
def did_occur_recently(event_time, max_elapsed_time):
'''Did event_time occur and was it within the last max_elapsed_time seconds?'''
if event_time is None:
return False
elapsed_time = time.time() - event_time
return elapsed_time < max_elapsed_time
async def check_for_intruder(robot, dsg:DeskSecurityGuard):
''''''
# Check which faces can be seen, and if any are the owner or an intruder
owner_face = None
intruder_face = None
for visible_face in robot.world.visible_faces:
if visible_face.name.lower() == dsg.owner_name.lower():
if owner_face:
print("Multiple faces with name %s seen - %s and %s!" %
(dsg.owner_name, owner_face, visible_face))
owner_face = visible_face
else:
# just use the first intruder seen
if not intruder_face:
intruder_face = visible_face
# Update times first/last seen owner or an intruder
if owner_face:
dsg.time_last_observed_owner = owner_face.last_observed_time
if dsg.time_first_observed_owner is None:
dsg.time_first_observed_owner = dsg.time_last_observed_owner
if intruder_face:
if dsg.time_last_observed_intruder is None or \
intruder_face.last_observed_time > dsg.time_last_observed_intruder:
dsg.time_last_observed_intruder = intruder_face.last_observed_time
if dsg.time_first_observed_intruder is None:
dsg.time_first_observed_intruder = dsg.time_last_observed_intruder
# Check if there's anything to investigate
can_see_owner = did_occur_recently(dsg.time_last_observed_owner, 1.0)
can_see_intruders = did_occur_recently(dsg.time_last_observed_intruder, 1.0)
if not dsg.is_armed:
can_see_intruders = False
if not can_see_intruders:
dsg.time_first_observed_intruder = None
if can_see_owner:
# If robot can see the owner then look at and greet them occasionally
robot.set_all_backpack_lights(cozmo.lights.green_light)
if not did_occur_recently(dsg.time_last_announced_owner, 60.0):
await robot.play_anim_trigger(cozmo.anim.Triggers.NamedFaceInitialGreeting).wait_for_completed()
dsg.time_last_announced_owner = time.time()
elif owner_face:
await robot.turn_towards_face(owner_face).wait_for_completed()
elif can_see_intruders:
# Don't react unless this is a confirmed intruder
is_confirmed_intruder = dsg.has_confirmed_intruder()
if is_confirmed_intruder:
# Definitely an intruder - turn backpack red to indicate
robot.set_all_backpack_lights(cozmo.lights.red_light)
# Sound an alarm (every X seconds)
if not did_occur_recently(dsg.time_last_announced_intruder, 10):
await robot.say_text("Intruder Alert").wait_for_completed()
dsg.time_last_announced_intruder = time.time()
# Pounce at intruder (every X seconds)
if not did_occur_recently(dsg.time_last_pounced_at_intruder, 10.0):
await robot.play_anim_trigger(cozmo.anim.Triggers.CubePouncePounceNormal).wait_for_completed()
dsg.time_last_pounced_at_intruder = time.time()
# Turn towards the intruder to keep them in view
if intruder_face:
await robot.turn_towards_face(intruder_face).wait_for_completed()
else:
# Possibly an intruder - turn backpack blue to indicate, and play
# suspicious animation (if not played recently)
robot.set_all_backpack_lights(cozmo.lights.blue_light)
if not did_occur_recently(dsg.time_last_suspicious, 10.0):
await robot.play_anim_trigger(cozmo.anim.Triggers.HikingInterestingEdgeThought).wait_for_completed()
dsg.time_last_suspicious = time.time()
elif intruder_face:
# turn robot towards intruder face slightly to get a better look at them
await robot.turn_towards_face(intruder_face).wait_for_completed()
else:
robot.set_backpack_lights_off()
async def desk_security_guard(robot):
'''The core of the desk_security_guard program'''
# Turn on image receiving by the camera
robot.camera.image_stream_enabled = True
# Create our security guard
dsg = DeskSecurityGuard()
# Make sure Cozmo is clear of the charger
if robot.is_on_charger:
# Drive fully clear of charger (not just off the contacts)
await robot.drive_off_charger_contacts().wait_for_completed()
await robot.drive_straight(distance_mm(150), speed_mmps(50)).wait_for_completed()
# Tilt head up to look for people
await robot.set_head_angle(cozmo.robot.MAX_HEAD_ANGLE).wait_for_completed()
initial_pose_angle = robot.pose_angle
patrol_offset = 0 # middle
max_pose_angle = 45 # offset from initial pose_angle (up to +45 or -45 from this)
# Time to wait between each turn and patrol, in seconds
time_between_turns = 2.5
time_between_patrols = 20
time_for_next_turn = time.time() + time_between_turns
time_for_next_patrol = time.time() + time_between_patrols
while True:
# Turn head every few seconds to cover a wider field of view
# Only do this if not currently investigating an intruder
if (time.time() > time_for_next_turn) and not dsg.is_investigating_intruder():
# pick a random amount to turn
angle_to_turn = randint(10,40)
# 50% chance of turning in either direction
if randint(0,1) > 0:
angle_to_turn = -angle_to_turn
# Clamp the amount to turn
face_angle = (robot.pose_angle - initial_pose_angle).degrees
face_angle += angle_to_turn
if face_angle > max_pose_angle:
angle_to_turn -= (face_angle - max_pose_angle)
elif face_angle < -max_pose_angle:
angle_to_turn -= (face_angle + max_pose_angle)
# Turn left/right
await robot.turn_in_place(degrees(angle_to_turn)).wait_for_completed()
# Tilt head up/down slightly
await robot.set_head_angle(degrees(randint(30,44))).wait_for_completed()
# Queue up the next time to look around
time_for_next_turn = time.time() + time_between_turns
# Every now and again patrol left and right between 3 patrol points
if (time.time() > time_for_next_patrol) and not dsg.is_investigating_intruder():
# Check which way robot is facing vs initial pose, pick a new patrol point
face_angle = (robot.pose_angle - initial_pose_angle).degrees
drive_right = (patrol_offset < 0) or ((patrol_offset == 0) and (face_angle > 0))
# Turn to face the new patrol point
if drive_right:
await robot.turn_in_place(degrees(90 - face_angle)).wait_for_completed()
patrol_offset += 1
else:
await robot.turn_in_place(degrees(-90 - face_angle)).wait_for_completed()
patrol_offset -= 1
# Drive to the patrol point, playing animations along the way
await robot.drive_wheels(20, 20)
for i in range(1,4):
await robot.play_anim("anim_hiking_driving_loop_0" + str(i)).wait_for_completed()
# Stop driving
robot.stop_all_motors()
# Turn to face forwards again
face_angle = (robot.pose_angle - initial_pose_angle).degrees
if face_angle > 0:
await robot.turn_in_place(degrees(-90)).wait_for_completed()
else:
await robot.turn_in_place(degrees(90)).wait_for_completed()
# Queue up the next time to patrol
time_for_next_patrol = time.time() + time_between_patrols
# look for intruders
await check_for_intruder(robot, dsg)
# Sleep to allow other things to run
await asyncio.sleep(0.05)
async def run(sdk_conn):
'''The run method runs once the Cozmo SDK is connected.'''
robot = await sdk_conn.wait_for_robot()
try:
await desk_security_guard(robot)
except KeyboardInterrupt:
print("")
print("Exit requested by user")
if __name__ == '__main__':
cozmo.setup_basic_logging()
cozmo.robot.Robot.drive_off_charger_on_connect = False # Stay on charger until init
try:
cozmo.connect_with_tkviewer(run, force_on_top=True)
except cozmo.ConnectionError as e:
sys.exit("A connection error occurred: %s" % e)
5. quick tap
Cozmo快速點選 - 當顏色匹配時儘快點選您的立方體(紅色除外),但永遠不要在都是紅色時點選!
當玩家得到5分時遊戲結束。
import asyncio, random, sys, time
import cozmo
from cozmo.lights import blue_light, Color, green_light, Light, red_light, white_light, off_light
from cozmo.util import degrees, distance_mm, radians, speed_mmps
purple_light = Light(Color(name = 'purple', rgb = (255, 0, 255)))
yellow_light = Light(Color(name = 'yellow', rgb = (255, 255, 0)))
LIGHT_COLORS_LIST = [blue_light, green_light, purple_light, red_light, white_light, yellow_light]
CHOOSE_CUBES_STATE = 'choose_cubes' # If the game is in CHOOSE_CUBES_STATE, on_cube_tap assigns the player's cube.
GAME_STATE = 'game' # If the game is in GAME_STATE, on_cube_tap registers the tap time of the players.
MAKE_BUZZERS_DIFFERENT_COLORS = 'MAKE_BUZZERS_DIFFERENT_COLORS'
MAKE_BUZZERS_RED = 'MAKE_BUZZERS_RED'
MAKE_BUZZERS_SAME_COLORS = 'MAKE_BUZZERS_SAME_COLORS'
# The buzzers have a 50% chance of displaying the same colors.
RATE_MAKE_BUZZERS_DIFFERENT_COLORS = 0.17 # The buzzers have a 17% chance of displaying different colors.
RATE_MAKE_BUZZERS_RED = 0.33 # the buzzers have a 33% chance of displaying red.
RATE_COZMO_ACCURACY = 0.9 # Cozmo has a 90% chance of reacting correctly to the buzzers.
# This number can therefore be lowered to have Cozmo more frequently make the wrong move.
SCORE_TO_WIN = 5 # the game ends once either player's score has reached SCORE_TO_WIN
class QuickTapGame:
'''The game logic of Quick Tap.'''
def __init__(self, robot: cozmo.robot.Robot):
self.robot = robot
self.player = QuickTapPlayer()
self.cozmo_player = CozmoQuickTapPlayer(robot)
robot.add_event_handler(cozmo.anim.EvtAnimationCompleted, self.on_anim_completed)
robot.add_event_handler(cozmo.objects.EvtObjectTapped, self.on_cube_tap)
self.cubes = None
self.countdown_cube = None
self.buzzer_display_type = None
self.round_start_time = time.time()
self.quick_tap_player_1 = None
self.quick_tap_player_2 = None
self.round_over = False
self.quick_tap_state = CHOOSE_CUBES_STATE
async def move_cozmo_to_ready_pose(self):
self.robot.set_lift_height(0, in_parallel = True)
self.robot.set_head_angle(degrees(0), in_parallel = True)
await self.robot.wait_for_all_actions_completed()
async def run(self):
'''Assigns the cubes, then starts a new round until a player has won.'''
await self.move_cozmo_to_ready_pose()
self.print_starting_instructions()
if not self.cubes_connected():
print('Cubes did not connect successfully - check that they are nearby. You may need to replace the batteries.')
return
await self.assign_cubes()
self.quick_tap_state = GAME_STATE
while max(self.player.score, self.cozmo_player.score) < SCORE_TO_WIN:
await self.game_round()
await self.report_winner()
async def game_round(self):
'''Sets up and runs a round of the game.
In run(), a new round starts unless a player's score reaches SCORE_TO_WIN.
First we ready the players and cubes, and then start the countdown.
After the countdown, the cubes light up. Then Cozmo makes his move.
Once Cozmo's move is over, we determine the winner of the round,
and Cozmo reacts accordingly.
'''
self.round_over = False
await self.reset_players()
await self.countdown_cube.countdown()
await self.set_round_lights()
self.round_start_time = time.time()
await self.cozmo_player.determine_move(self.buzzer_display_type)
while not self.round_over: # self.round_over is True when Cozmo's tap animation is completed
await asyncio.sleep(0)
await self.cozmo_anim_reaction()
async def set_round_lights(self):
'''Waits a random delay, then sets a display on the buzzer cubes.'''
await self.cube_light_delay()
self.determine_buzzer_display()
self.set_buzzer_lights()
async def reset_players(self):
'''Gets the players and cubes ready for a new round.'''
self.player.reset()
self.cozmo_player.reset()
await self.robot.set_lift_height(1.0).wait_for_completed()
self.turn_off_buzzer_cubes()
async def cube_light_delay(self):
'''Waits between 0 and 2 seconds.'''
delay = random.random() * 2
await asyncio.sleep(delay)
def determine_buzzer_display(self):
'''Chooses a buzzer display type based on the probabilities defined above.'''
probability_red = random.random()
if probability_red < RATE_MAKE_BUZZERS_RED:
self.buzzer_display_type = MAKE_BUZZERS_RED
else:
probability_different_colors = random.random()
if probability_different_colors < RATE_MAKE_BUZZERS_DIFFERENT_COLORS:
self.buzzer_display_type = MAKE_BUZZERS_DIFFERENT_COLORS
else:
self.buzzer_display_type = MAKE_BUZZERS_SAME_COLORS
def on_cube_tap(self, evt, obj, **kwargs):
'''Responds to cube taps depending on quick_tap_state.
If in CHOOSE_CUBES_STATE, on_cube_tap assigns the player's cube.
If in GAME_STATE, on_cube_tap registers the tap time of the players.
'''
if obj.object_id is not None:
if self.quick_tap_state == CHOOSE_CUBES_STATE:
if self.cozmo_player.cube is None:
# Cozmo hasn't picked a cube yet - ignore
pass
elif obj.object_id != self.cozmo_player.cube.object_id:
self.player.cube = obj
self.player.cube.set_lights_off()
elif self.quick_tap_state == GAME_STATE:
self.turn_off_buzzer_cubes()
if obj.object_id == self.player.cube.object_id:
self.player.register_tap(self.round_start_time)
elif obj.object_id == self.cozmo_player.cube.object_id:
self.cozmo_player.register_tap(self.round_start_time)
async def on_anim_completed(self, evt, animation_name, **kwargs):
'''Signals the end of the round if the animation completed was Cozmo's tap animation.'''
if self.quick_tap_state == GAME_STATE and animation_name in ['OnSpeedtapTap', 'OnSpeedtapFakeout', 'OnSpeedtapIdle']:
await self.determine_result_of_round()
self.round_over = True
async def determine_result_of_round(self):
'''Determines the first tapper, then whether that tapper wins or loses based on the buzzer display.'''
self.determine_first_tapper()
if self.quick_tap_player_1:
if self.buzzer_display_type == MAKE_BUZZERS_SAME_COLORS:
self.quick_tap_player_1.wins_round()
await self.quick_tap_player_1.cube.flair_correct_tap()
elif self.buzzer_display_type == MAKE_BUZZERS_DIFFERENT_COLORS or self.buzzer_display_type == MAKE_BUZZERS_RED:
self.quick_tap_player_2.wins_round()
await self.quick_tap_player_1.cube.flair_incorrect_tap()
self.report_scores()
def determine_first_tapper(self):
'''Finds the first tapper from the players' registered tap times.'''
if self.player.has_tapped or self.cozmo_player.has_tapped:
if self.cozmo_player.elapsed_tap_time < self.player.elapsed_tap_time:
self.quick_tap_player_1 = self.cozmo_player
self.quick_tap_player_2 = self.player
else:
self.quick_tap_player_1 = self.player
self.quick_tap_player_2 = self.cozmo_player
else:
self.quick_tap_player_1 = None
async def cozmo_anim_reaction(self):
'''Cozmo plays an animation based on whether he won or lost the round.'''
if self.cozmo_player.won_round:
await self.robot.play_anim_trigger(cozmo.anim.Triggers.OnSpeedtapHandCozmoWin).wait_for_completed()
else:
await self.robot.play_anim_trigger(cozmo.anim.Triggers.OnSpeedtapHandPlayerWin).wait_for_completed()
async def assign_cubes(self):
'''Cozmo chooses his cube, then the player chooses,
and the remaining cube becomes the countdown cube.
'''
await self.cozmo_player.select_cube()
self.blink_available_cubes()
await self.robot.world.wait_for(cozmo.objects.EvtObjectTapped)
self.player.cube.stop_light_chaser()
self.assign_countdown_cube()
def blink_available_cubes(self):
'''Blinks the cubes which Cozmo did not select for himself.'''
for cube in self.cubes:
if cube.object_id != self.cozmo_player.cube.object_id:
cube.start_light_chaser(0.5)
def assign_countdown_cube(self):
'''Assigns the countdown cube to be whichever cube has not been selected by the player or Cozmo.'''
for cube in self.cubes:
if cube.object_id != self.cozmo_player.cube.object_id and cube.object_id != self.player.cube.object_id:
self.countdown_cube = cube
self.countdown_cube.stop_light_chaser()
def set_buzzer_lights(self):
'''Sets the buzzer cube lights based on the buzzer display type.'''
if self.buzzer_display_type == MAKE_BUZZERS_RED:
self.turn_on_buzzer_cubes_red()
elif self.buzzer_display_type == MAKE_BUZZERS_DIFFERENT_COLORS:
self.turn_on_buzzer_cubes_different()
elif self.buzzer_display_type == MAKE_BUZZERS_SAME_COLORS:
self.turn_on_buzzer_cubes_same()
def turn_on_buzzer_cubes_same(self):
'''Sets the buzzer cubes to the same randomly generated color pair.'''
same_colors = self.generate_random_buzzer_colors()
self.player.cube.set_light_corners(*same_colors)
self.cozmo_player.cube.set_light_corners(*same_colors)
def turn_on_buzzer_cubes_different(self):
'''Sets the buzzer cubes to different randomly generated color pairs.'''
player_cube_colors = self.generate_random_buzzer_colors()
cozmo_cube_colors = self.generate_random_buzzer_colors()
while player_cube_colors == cozmo_cube_colors:
cozmo_cube_colors = self.generate_random_buzzer_colors()
self.player.cube.set_light_corners(*player_cube_colors)
self.cozmo_player.cube.set_light_corners(*cozmo_cube_colors)
def turn_on_buzzer_cubes_red(self):
'''Sets the buzzer cubes to red.'''
self.player.cube.set_lights(cozmo.lights.red_light)
self.cozmo_player.cube.set_lights(cozmo.lights.red_light)
def generate_random_buzzer_colors(self):
'''Creates a list of different alternating colors, chosen randomly from LIGHT_COLORS_LIST.
Returns:
a list of Lights from LIGHT_COLORS_LIST
'''
num_colors = len(LIGHT_COLORS_LIST)
x = random.randrange(num_colors)
y = random.randrange(num_colors)
while y == x:
y = random.randrange(num_colors)
return [LIGHT_COLORS_LIST[x], LIGHT_COLORS_LIST[y], LIGHT_COLORS_LIST[x], LIGHT_COLORS_LIST[y]]
def turn_off_buzzer_cubes(self):
'''Turns off both buzzer cubes' lights.'''
self.player.cube.set_lights_off()
self.cozmo_player.cube.set_lights_off()
def cubes_connected(self):
'''Checks if Cozmo connects to all three cubes successfully.
Returns:
bool specifying if all three cubes have been successfully connected'''
cube1 = self.robot.world.get_light_cube(cozmo.objects.LightCube1Id)
cube2 = self.robot.world.get_light_cube(cozmo.objects.LightCube2Id)
cube3 = self.robot.world.get_light_cube(cozmo.objects.LightCube3Id)
self.cubes = [cube1, cube2, cube3]
return not (cube1 == None or cube2 == None or cube3 == None)
def print_starting_instructions(self):
print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
print('Welcome to Quick Tap!')
print('Put 1 cube in front of Cozmo. It will turn white when he can see it.')
print('Cozmo will tap the cube to select it as his buzzer.')
print('After Cozmo, tap a cube to select your buzzer.')
print('The last cube will display a countdown with its lights start each round.')
print('When the buzzers light up, tap if the colors match, but never tap on red!')
print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
def report_scores(self):
'''Prints the current scores of the game.'''
print('---------------------------------------------------')
print('Player score: {}'.format(self.player.score))
print('Cozmo score: {}'.format(self.cozmo_player.score))
print('---------------------------------------------------')
async def report_winner(self):
'''Prints the final scores of the game, and the winner.'''
print('You won {} round{}'.format(self.player.score, 's' if self.player.score != 1 else ''))
print('Cozmo won {} round{}'.format(self.cozmo_player.score, 's' if self.cozmo_player.score != 1 else ''))
if self.cozmo_player.score > self.player.score:
print('~COZMO WINS QUICK TAP~')
await self.robot.play_anim_trigger(cozmo.anim.Triggers.OnSpeedtapGameCozmoWinHighIntensity).wait_for_completed()
else:
print('~PLAYER WINS QUICK TAP~')
await self.robot.play_anim_trigger(cozmo.anim.Triggers.OnSpeedtapGamePlayerWinHighIntensity).wait_for_completed()
class QuickTapPlayer():
'''Player-specifc Quick Tap logic.'''
def __init__(self):
self.cube = None
self.score = 0
self.has_tapped = False
self.name = 'Player'
self.elapsed_tap_time = None
self.won_round = False
def wins_round(self):
'''Prints winning message, updates score, and sets won_round flag to True.'''
print('****{} wins the round****'.format(self.name))
self.score += 1
self.won_round = True
def reset(self):
'''Resets elapsed_tap_time, and sets has_tapped and won_round flags to False.'''
self.elapsed_tap_time = sys.maxsize
self.has_tapped = False
self.won_round = False
def register_tap(self, round_start_time):
'''Calculates elapsed time of tap, and sets has_tapped flag to True.
Args:
round_start_time (Time): time stamp set in QuickTapGame to calculate players' elapsed_tap_time
'''
self.elapsed_tap_time = time.time() - round_start_time
self.has_tapped = True
class CozmoQuickTapPlayer(QuickTapPlayer):
'''Cozmo-specific Quick Tap player logic, with a reference to the actual Cozmo robot.
Args:
robot (cozmo.robot.Robot): passed in from the QuickTapGame class
'''
def __init__(self, robot: cozmo.robot.Robot):
super().__init__()
self.robot = robot
self.name = 'Cozmo'
async def select_cube(self):
'''Cozmo looks for a cube, drives to it, and taps it.'''
self.cube = await self.robot.world.wait_for_observed_light_cube()
self.cube.set_lights(cozmo.lights.white_light)
await asyncio.sleep(2)
self.cube.start_light_chaser(0.5)
await self.robot.set_lift_height(1.0).wait_for_completed()
await self.robot.go_to_object(self.cube, distance_mm(40)).wait_for_completed()
await self.robot.play_anim_trigger(cozmo.anim.Triggers.OnSpeedtapTap).wait_for_completed()
self.cube.stop_light_chaser()
self.cube.set_lights(green_light)
async def determine_move(self, buzzer_display_type):
'''Cozmo chooses a move based on the probabilities above.
Args:
buzzer_display_type (string): the display of the buzzers
Either MAKE_BUZZERS_DIFFERENT_COLORS, MAKE_BUZZERS_RED, or MAKE_BUZZERS_SAME_COLORS
'''
await self.hesitate()
probability_correct = random.random()
if probability_correct < RATE_COZMO_ACCURACY:
if buzzer_display_type == MAKE_BUZZERS_SAME_COLORS:
await self.tap()
else:
await self.fail_to_tap()
else:
if buzzer_display_type == MAKE_BUZZERS_RED or buzzer_display_type == MAKE_BUZZERS_DIFFERENT_COLORS:
await self.tap()
else:
await self.fail_to_tap()
async def hesitate(self):
'''Cozmo waits between 0 and 0.5 seconds'''
delay = random.random() * .5
await asyncio.sleep(delay)
async def tap(self):
'''Calls Cozmo's tap animation.'''
await self.robot.play_anim_trigger(cozmo.anim.Triggers.OnSpeedtapTap).wait_for_completed()
async def fail_to_tap(self):
'''Randomly calls either Cozmo's fakeout tap animation or his idle animation.'''
probability_fakeout = random.random()
if probability_fakeout < 0.5:
await self.robot.play_anim_trigger(cozmo.anim.Triggers.OnSpeedtapFakeout).wait_for_completed()
else:
await self.robot.play_anim_trigger(cozmo.anim.Triggers.OnSpeedtapIdle).wait_for_completed()
rainbow_colors = [blue_light, red_light, green_light, yellow_light]
class BlinkyCube(cozmo.objects.LightCube):
'''Same as a normal cube, plus extra methods specific to Quick Tap.'''
def __init__(self, *a, **kw):
super().__init__(*a, **kw)
self._chaser = None
def start_light_chaser(self, pause_time):
'''Rotates four colors around the cube light corners in a continuous loop.
Args:
pause_time (float): the time awaited before moving the rotating lights
'''
if self._chaser:
raise ValueError('Light chaser already running')
async def _chaser():
while True:
for i in range(4):
self.set_light_corners(*rainbow_colors)
await asyncio.sleep(pause_time, loop = self._loop)
light = rainbow_colors.pop(0)
rainbow_colors.append(light)
self._chaser = asyncio.ensure_future(_chaser(), loop = self._loop)
def stop_light_chaser(self):
'''Ends the _chaser loop.'''
if self._chaser:
self._chaser.cancel()
self._chaser = None
self.set_lights_off()
async def countdown(self):
'''Sets all lights to white, then 3 lights, then 2 lights, then 1 light, then none.'''
for i in range(5):
cols = [white_light] * (4 - i) + [off_light] * i
self.set_light_corners(*cols)
await asyncio.sleep(.5)
async def flair_correct_tap(self):
'''Runs a fast _chaser when the player taps correctly.'''
self.start_light_chaser(0.1)
await asyncio.sleep(2)
self.stop_light_chaser()
async def flair_incorrect_tap(self):
'''Blinks red when the player taps incorrectly.'''
for _ in range(4):
self.set_lights(red_light)
await asyncio.sleep(.2)
self.set_lights(off_light)
await asyncio.sleep(.2)
# Make sure World knows how to instantiate the BlinkyCube subclass
cozmo.world.World.light_cube_factory = BlinkyCube
async def cozmo_program(robot: cozmo.robot.Robot):
game = QuickTapGame(robot)
await game.run()
cozmo.run_program(cozmo_program)
6. quizmaster cozmo
測驗大師Cozmo - 由Cozmo主持的簡單測驗遊戲。
使用3個立方體作為蜂鳴器進行最多3名玩家的測驗。
import asyncio
import json
from random import randrange, shuffle
import cozmo
class QuizQuestion:
"""A single multiple choice question with 4 choices, one correct.
Args:
question (str): The question.
answer_options (list of str): 4 multiple choice answers where the
1st element is the correct answer. (Choices will be shuffled each time.)
Raises:
:class:`ValueError` if not supplied exactly 4 answer_options.
"""
def __init__(self, question, answer_options):
if len(answer_options) != 4:
raise ValueError("Expected 4 answer_options, got %s" % len(answer_options))
self.question = question
self._answer_index = 0
self.answer_options = list(answer_options) # copy the answer_options, so we can shuffle them
self.shuffle_answer_options()
@property
def answer_number(self):
"""int: The number (i.e. 1, 2, 3 or 4) representing the correct answer."""
return self._answer_index + 1
@property
def answer_str(self):
"""str: The string representing the correct answer."""
return self.answer_options[self._answer_index]
def shuffle_answer_options(self):
"""Shuffle the answer_options so that they're not always read in the same order."""
# to shuffle whilst keeping track of the answer, we first pop the
# answer out, shuffle the rest, and then insert the answer at a random
# known point.
answer = self.answer_options.pop(self._answer_index)
shuffle(self.answer_options)
self._answer_index = randrange(len(self.answer_options)+1)
self.answer_options.insert(self._answer_index, answer)
class CozmoQuizPlayer:
"""A player in the quiz.
Args:
robot (:class:`cozmo.robot.Robot`): The cozmo robot.
cube (:class:`cozmo.objects.LightCube`): This player's cube.
index(int): The number (i.e. 0, 1 or 2) specifying the index of this player and cube.
color(:class:`cozmo.lights.Light`): The light color for this player.
name(str): The name of this player.
"""
def __init__(self,
robot: cozmo.robot.Robot,
cube: cozmo.objects.LightCube, index, color, name):
self._robot = robot
self._cube = cube
self._index = index
self._color = color
self.name = name
self.score = 0
self._has_buzzed_in = False
self._answer_index = 0
def verify_setup(self):
# Return True if and only if the player was setup correctly and has a connected cube.
success = True
if self._cube is None:
cozmo.logger.warning("Cozmo is not connected to a cube %s - check the battery.", (self._index+1))
success = False
return success
def reset_for_question(self):
self.turn_light_on()
self._has_buzzed_in = False
def turn_light_off(self):
if self._cube is not None:
self._cube.set_lights_off()
def turn_light_on(self):
if self._cube is not None:
self._cube.set_lights(self._color)
def set_answer_light(self):
if self._cube is not None:
# lights up from 1 to 4 lights in a clockwise order to indicate the
# current selected answer.
cols = [cozmo.lights.off_light] * 4
for i in range(self.answer_number):
# We index cols in reverse order so they light up in a clockwise order.
cols[3-i] = self._color
self._cube.set_light_corners(*cols)
def on_buzzed_in(self):
# Called when the player buzzes in for a question.
self.turn_light_on()
self._has_buzzed_in = True
def start_answering(self):
# Called when the player starts answering a question.
self._answer_index = 0
self.set_answer_light()
def cycle_answer(self):
# Called every time a player taps the cube to cycle through the 4 answer answer_options.
self._answer_index += 1
if self._answer_index > 3:
self._answer_index = 0
self.set_answer_light()
@property
def object_id(self):
if self._cube is None:
return None
else:
return self._cube.object_id
@property
def has_buzzed_in(self):
"""bool: True if this player has buzzed in for this question already."""
return self._has_buzzed_in
@property
def answer_number(self):
"""int: The number (1..4) representing this player's answer."""
return self._answer_index + 1
class CozmoQuizMaster:
"""Cozmo the robot quiz master.
Maintains the list of questions and the players, and runs the quiz.
Args:
robot (:class:`cozmo.robot.Robot`): The cozmo robot.
"""
def __init__(self, robot: cozmo.robot.Robot):
self._robot = robot
# initialize the list of players
cube_ids = cozmo.objects.LightCubeIDs
cube_colors = [cozmo.lights.red_light, cozmo.lights.green_light, cozmo.lights.blue_light]
player_names = ["Red", "Green", "Blue"]
self._players = [] # type: list of CozmoQuizPlayer
for i in range(len(cube_ids)):
cube = robot.world.get_light_cube(cube_ids[i])
player = CozmoQuizPlayer(robot, cube, i, cube_colors[i], player_names[i])
self._players.append(player)
self._answering_player = None # type: CozmoQuizPlayer
self._buzzing_in_accepted = False
self._answers_accepted = False
self._questions = []
with open("quiz_questions.json") as data_file:
data = json.load(data_file)
for quiz_question_json in data:
question = quiz_question_json["question"]
answer_options = quiz_question_json["answer_options"]
self._questions.append(QuizQuestion(question, answer_options))
def verify_setup(self):
# return True if and only if everything is setup correctly
num_valid_players = 0
for player in self._players:
if player.verify_setup():
num_valid_players += 1
return (num_valid_players > 0)
def get_player_for_object_id(self, object_id):
for player in self._players:
if player.object_id == object_id:
return player
cozmo.logger.warn("No player for object_id %s", object_id)
return None
def on_cube_tapped(self, evt, **kw):
# find the player for that cube, and handle the tap as appropriate
player = self.get_player_for_object_id(evt.obj.object_id)
if self._buzzing_in_accepted and self._answering_player is None:
if player and not player.has_buzzed_in:
self._answering_player = player
player.on_buzzed_in()
elif self._answers_accepted and player == self._answering_player:
if player:
player.cycle_answer()
def turn_player_lights_on(self):
for player in self._players:
player.turn_light_on()
def turn_player_lights_off(self):
for player in self._players:
player.turn_light_off()
def get_next_question(self) -> QuizQuestion:
if len(self._questions) > 0:
i = randrange(len(self._questions))
question = self._questions.pop(i)
return question
else:
print("Out of questions!")
return None
def create_answer_options_string(self, list_of_answer_options) -> str:
# Build a string that lists all of the answer_options in order.
text = "Is it "
for i in range(len(list_of_answer_options)):
conjunction = ""
if i > 0:
is_last_option = (i == (len(list_of_answer_options) - 1))
conjunction = " or " if is_last_option else ", "
text += conjunction + str(i+1) + ": " + list_of_answer_options[i]
return text
def say_text(self, text, in_parallel=False):
print("%s" % text)
return self._robot.say_text(text, in_parallel=in_parallel)
async def wait_for_answer(self, player):
# Wait for player's answer (whatever the player leaves selected after x seconds)
# This is after Cozmo has finished speaking, so we've already given the
# player a few seconds.
await asyncio.sleep(2.0)
return player.answer_number
def get_winning_players(self):
# get a list of all the players with the top score
winning_players = []
for player in self._players:
if len(winning_players) == 0 or player.score > winning_players[0].score:
winning_players = [player]
elif player.score == winning_players[0].score:
winning_players.append(player)
return winning_players
async def report_leader(self, is_final_score):
# Report the leading / winning player(s)
winning_players = self.get_winning_players()
winning_score = winning_players[0].score
points_string = "points" if (winning_score != 1) else "point"
winning_score_str = "%s %s" % (winning_score, points_string)
if len(winning_players) == len(self._players):
if is_final_score:
action = self.say_text("It ends as a draw with everyone at %s" % winning_score_str)
else:
action = self.say_text("It's all tied at %s" % winning_score_str)
else:
winner_names = winning_players[0].name
for i in range(1, len(winning_players)):
# separate winner names with commas, but use 'and' for the last one
is_last_player = (i == (len(winning_players)-1))
conjunction = " and " if is_last_player else ", "
winner_names = winner_names + conjunction + winning_players[i].name
if is_final_score:
action = self.say_text("%s won with %s" % (winner_names, winning_score_str))
else:
is_or_are = "is" if len(winning_players) == 1 else "are"
action = self.say_text("%s %s in the lead with %s" %
(winner_names, is_or_are, winning_score_str))
await action.wait_for_completed()
async def get_correct_player(self, question: QuizQuestion):
# Read the answer_options
read_options_action = self.say_text(self.create_answer_options_string(question.answer_options))
num_answers = 0
# Let the player(s) buzz in and answer
for _ in range(len(self._players)):
if num_answers > 0:
read_options_action = self.say_text("Anyone else?")
# wait for a player to buzz in before the answer finishes
while not read_options_action.is_completed and self._answering_player is None:
await asyncio.sleep(0.1)
if self._answering_player is None:
# question reading finished, give them 1 more second to buzz in
await asyncio.sleep(1.0)
player = self._answering_player
if player is None:
# Nobody answered in time
await read_options_action.wait_for_completed()
return None
# short wait before accepting player answer, so we don't incorrectly
# identify late buzzes as cycling the answer
await asyncio.sleep(0.5)
# Start accepting taps from the answering player
player.start_answering()
self._answers_accepted = True
await read_options_action.wait_for_completed()
action = self.say_text(player.name + "?")
await action.wait_for_completed()
player_answer = await self.wait_for_answer(player)
self._answers_accepted = False
num_answers += 1
if player_answer == question.answer_number:
# Correct
player.score += 1
return player
else:
# Incorrect
player.score -= 1
action = self._robot.play_anim_trigger(cozmo.anim.Triggers.KnockOverFailure)
self._answering_player = None
player.turn_light_off()
await action.wait_for_completed()
async def ask_question(self, question: QuizQuestion):
# Reset for a new question
for player in self._players:
player.reset_for_question()
self._answering_player = None
self._buzzing_in_accepted = False
self._answers_accepted = False
# Read the question
action = self.say_text(question.question)
await action.wait_for_completed()
# Allow buzzing in
self.turn_player_lights_off()
self._buzzing_in_accepted = True
correct_player = await self.get_correct_player(question)
if correct_player is None:
# Nobody answered correctly
action = self._robot.play_anim_trigger(cozmo.anim.Triggers.FailedToRightFromFace)
await action.wait_for_completed()
action = self.say_text("The answer was %s: %s" % (question.answer_number, question.answer_str))
await action.wait_for_completed()
else:
# Correct
action = self._robot.play_anim_trigger(cozmo.anim.Triggers.ReactToBlockPickupSuccess)
await action.wait_for_completed()
action = self.say_text("Correct it was %s: %s" % (question.answer_number, question.answer_str))
await action.wait_for_completed()
async def run(self):
# Exit immediately if setup failed
if not self.verify_setup():
return
# Add a handler so that we can track whenever a cube is tapped
self._robot.add_event_handler(cozmo.objects.EvtObjectTapped, self.on_cube_tapped)
# Keep asking questions until there are none left
while True:
question = self.get_next_question()
if question:
await self.ask_question(question)
else:
print("Quiz is complete!")
await self.report_leader(True)
action = self._robot.play_anim_trigger(cozmo.anim.Triggers.BuildPyramidSuccess)
await action.wait_for_completed()
action = self.say_text("Game Over - Bye!")
await action.wait_for_completed()
return
async def cozmo_program(robot: cozmo.robot.Robot):
quiz_master = CozmoQuizMaster(robot)
await quiz_master.run()
cozmo.run_program(cozmo_program)
json
[
{
"question": "What is 3 times 4?",
"answer_options": ["12", "9", "15", "14"]
},
{
"question": "Which of these is not a type of penguin?",
"answer_options": ["Rigatoni", "Fairy", "Macaroni", "Adelie"]
},
{
"question": "Which of these is not a species of rodent?",
"answer_options": ["Rabbit", "Beaver", "Lemming", "Capybara"]
},
{
"question": "In physics, which of these forces is real?",
"answer_options": ["Centripetal", "Coriolis", "Centrifugal", "Euler"]
},
{
"question": "What is the 8th digit of Pi?",
"answer_options": ["6", "5", "2", "3"]
}
]
7. remote control cozmo
使用計算機上的網頁控制Cozmo。
此示例允許您使用Flask提供的網頁通過遠端命令控制Cozmo。
import asyncio
import io
import json
import math
import sys
sys.path.append('../lib/')
import flask_helpers
import cozmo
try:
from flask import Flask, request
except ImportError:
sys.exit("Cannot import from flask: Do `pip3 install --user flask` to install")
try:
from PIL import Image, ImageDraw
except ImportError:
sys.exit("Cannot import from PIL: Do `pip3 install --user Pillow` to install")
try:
import requests
except ImportError:
sys.exit("Cannot import from requests: Do `pip3 install --user requests` to install")
DEBUG_ANNOTATIONS_DISABLED = 0
DEBUG_ANNOTATIONS_ENABLED_VISION = 1
DEBUG_ANNOTATIONS_ENABLED_ALL = 2
# Annotator for displaying RobotState (position, etc.) on top of the camera feed
class RobotStateDisplay(cozmo.annotate.Annotator):
def apply(self, image, scale):
d = ImageDraw.Draw(image)
bounds = [3, 0, image.width, image.height]
def print_line(text_line):
text = cozmo.annotate.ImageText(text_line, position=cozmo.annotate.TOP_LEFT, outline_color='black', color='lightblue')
text.render(d, bounds)
TEXT_HEIGHT = 11
bounds[1] += TEXT_HEIGHT
robot = self.world.robot # type: cozmo.robot.Robot
# Display the Pose info for the robot
pose = robot.pose
print_line('Pose: Pos = <%.1f, %.1f, %.1f>' % pose.position.x_y_z)
print_line('Pose: Rot quat = <%.1f, %.1f, %.1f, %.1f>' % pose.rotation.q0_q1_q2_q3)
print_line('Pose: angle_z = %.1f' % pose.rotation.angle_z.degrees)
print_line('Pose: origin_id: %s' % pose.origin_id)
# Display the Accelerometer and Gyro data for the robot
print_line('Accelmtr: <%.1f, %.1f, %.1f>' % robot.accelerometer.x_y_z)
print_line('Gyro: <%.1f, %.1f, %.1f>' % robot.gyro.x_y_z)
# Display the Accelerometer and Gyro data for the mobile device
if robot.device_accel_raw is not None:
print_line('Device Acc Raw: <%.2f, %.2f, %.2f>' % robot.device_accel_raw.x_y_z)
if robot.device_accel_user is not None:
print_line('Device Acc User: <%.2f, %.2f, %.2f>' % robot.device_accel_user.x_y_z)
if robot.device_gyro is not None:
mat = robot.device_gyro.to_matrix()
print_line('Device Gyro Up: <%.2f, %.2f, %.2f>' % mat.up_xyz)
print_line('Device Gyro Fwd: <%.2f, %.2f, %.2f>' % mat.forward_xyz)
print_line('Device Gyro Left: <%.2f, %.2f, %.2f>' % mat.left_xyz)
def create_default_image(image_width, image_height, do_gradient=False):
'''Create a place-holder PIL image to use until we have a live feed from Cozmo'''
image_bytes = bytearray([0x70, 0x70, 0x70]) * image_width * image_height
if do_gradient:
i = 0
for y in range(image_height):
for x in range(image_width):
image_bytes[i] = int(255.0 * (x / image_width)) # R
image_bytes[i+1] = int(255.0 * (y / image_height)) # G
image_bytes[i+2] = 0 # B
i += 3
image = Image.frombytes('RGB', (image_width, image_height), bytes(image_bytes))
return image
flask_app = Flask(__name__)
remote_control_cozmo = None
_default_camera_image = create_default_image(320, 240)
_is_mouse_look_enabled_by_default = False
_is_device_gyro_mode_enabled_by_default = False
_gyro_driving_deadzone_ratio = 0.025
_display_debug_annotations = DEBUG_ANNOTATIONS_ENABLED_ALL
def remap_to_range(x, x_min, x_max, out_min, out_max):
'''convert x (in x_min..x_max range) to out_min..out_max range'''
if x < x_min:
return out_min
elif x > x_max:
return out_max
else:
ratio = (x - x_min) / (x_max - x_min)
return out_min + ratio * (out_max - out_min)
class RemoteControlCozmo:
def __init__(self, coz):
self.cozmo = coz
self.drive_forwards = 0
self.drive_back = 0
self.turn_left = 0
self.turn_right = 0
self.lift_up = 0
self.lift_down = 0
self.head_up = 0
self.head_down = 0
self.go_fast = 0
self.go_slow = 0
self.is_mouse_look_enabled = _is_mouse_look_enabled_by_default
self.is_device_gyro_mode_enabled = _is_device_gyro_mode_enabled_by_default
self.mouse_dir = 0
all_anim_names = list(self.cozmo.anim_names)
all_anim_names.sort()
self.anim_names = []
# Hide a few specific test animations that don't behave well
bad_anim_names = [
"ANIMATION_TEST",
"soundTestAnim"]
for anim_name in all_anim_names:
if anim_name not in bad_anim_names:
self.anim_names.append(anim_name)
default_anims_for_keys = ["anim_bored_01", # 0
"anim_poked_giggle", # 1
"anim_pounce_success_02", # 2
"anim_bored_event_02", # 3
"anim_bored_event_03", # 4
"anim_petdetection_cat_01", # 5
"anim_petdetection_dog_03", # 6
"anim_reacttoface_unidentified_02", # 7
"anim_upgrade_reaction_lift_01", # 8
"anim_speedtap_wingame_intensity02_01" # 9
]
self.anim_index_for_key = [0] * 10
kI = 0
for default_key in default_anims_for_keys:
try:
anim_idx = self.anim_names.index(default_key)
except ValueError:
print("Error: default_anim %s is not in the list of animations" % default_key)
anim_idx = kI
self.anim_index_for_key[kI] = anim_idx
kI += 1
self.action_queue = []
self.text_to_say = "Hi I'm Cozmo"
def set_anim(self, key_index, anim_index):
self.anim_index_for_key[key_index] = anim_index
def handle_mouse(self, mouse_x, mouse_y, delta_x, delta_y, is_button_down):
'''Called whenever mouse moves
mouse_x, mouse_y are in in 0..1 range (0,0 = top left, 1,1 = bottom right of window)
delta_x, delta_y are the change in mouse_x/y since the last update
'''
if self.is_mouse_look_enabled:
mouse_sensitivity = 1.5 # higher = more twitchy
self.mouse_dir = remap_to_range(mouse_x, 0.0, 1.0, -mouse_sensitivity, mouse_sensitivity)
self.update_mouse_driving()
desired_head_angle = remap_to_range(mouse_y, 0.0, 1.0, 45, -25)
head_angle_delta = desired_head_angle - self.cozmo.head_angle.degrees
head_vel = head_angle_delta * 0.03
self.cozmo.move_head(head_vel)
def set_mouse_look_enabled(self, is_mouse_look_enabled):
was_mouse_look_enabled = self.is_mouse_look_enabled
self.is_mouse_look_enabled = is_mouse_look_enabled
if not is_mouse_look_enabled:
# cancel any current mouse-look turning
self.mouse_dir = 0
if was_mouse_look_enabled:
self.update_mouse_driving()
self.update_head()
def handle_key(self, key_code, is_shift_down, is_ctrl_down, is_alt_down, is_key_down):
'''Called on any key press or release
Holding a key down may result in repeated handle_key calls with is_key_down==True
'''
# Update desired speed / fidelity of actions based on shift/alt being held
was_go_fast = self.go_fast
was_go_slow = self.go_slow
self.go_fast = is_shift_down
self.go_slow = is_alt_down
speed_changed = (was_go_fast != self.go_fast) or (was_go_slow != self.go_slow)
# Update state of driving intent from keyboard, and if anything changed then call update_driving
update_driving = True
if key_code == ord('W'):
self.drive_forwards = is_key_down
elif key_code == ord('S'):
self.drive_back = is_key_down
elif key_code == ord('A'):
self.turn_left = is_key_down
elif key_code == ord('D'):
self.turn_right = is_key_down
else:
if not speed_changed:
update_driving = False
# Update state of lift move intent from keyboard, and if anything changed then call update_lift
update_lift = True
if key_code == ord('R'):
self.lift_up = is_key_down
elif key_code == ord('F'):
self.lift_down = is_key_down
else:
if not speed_changed:
update_lift = False
# Update state of head move intent from keyboard, and if anything changed then call update_head
update_head = True
if key_code == ord('T'):
self.head_up = is_key_down
elif key_code == ord('G'):
self.head_down = is_key_down
else:
if not speed_changed:
update_head = False
# Update driving, head and lift as appropriate
if update_driving:
self.update_mouse_driving()
if update_head:
self.update_head()
if update_lift:
self.update_lift()
# Handle any keys being released (e.g. the end of a key-click)
if not is_key_down:
if (key_code >= ord('0')) and (key_code <= ord('9')):
anim_name = self.key_code_to_anim_name(key_code)
self.play_animation(anim_name)
elif key_code == ord(' '):
self.say_text(self.text_to_say)
def key_code_to_anim_name(self, key_code):
key_num = key_code - ord('0')
anim_num = self.anim_index_for_key[key_num]
anim_name = self.anim_names[anim_num]
return anim_name
def func_to_name(self, func):
if func == self.try_say_text:
return "say_text"
elif func == self.try_play_anim:
return "play_anim"
else:
return "UNKNOWN"
def action_to_text(self, action):
func, args = action
return self.func_to_name(func) + "( " + str(args) + " )"
def action_queue_to_text(self, action_queue):
out_text = ""
i = 0
for action in action_queue:
out_text += "[" + str(i) + "] " + self.action_to_text(action)
i += 1
return out_text
def queue_action(self, new_action):
if len(self.action_queue) > 10:
self.action_queue.pop(0)
self.action_queue.append(new_action)
def try_say_text(self, text_to_say):
try:
self.cozmo.say_text(text_to_say)
return True
except cozmo.exceptions.RobotBusy:
return False
def try_play_anim(self, anim_name):
try:
self.cozmo.play_anim(name=anim_name)
return True
except cozmo.exceptions.RobotBusy:
return False
def say_text(self, text_to_say):
self.queue_action((self.try_say_text, text_to_say))
self.update()
def play_animation(self, anim_name):
self.queue_action((self.try_play_anim, anim_name))
self.update()
def update(self):
'''Try and execute the next queued action'''
if len(self.action_queue) > 0:
queued_action, action_args = self.action_queue[0]
if queued_action(action_args):
self.action_queue.pop(0)
# Update gyro
if self.is_device_gyro_mode_enabled and self.cozmo.device_gyro:
self.update_gyro_driving()
def pick_speed(self, fast_speed, mid_speed, slow_speed):
if self.go_fast:
if not self.go_slow:
return fast_speed
elif self.go_slow:
return slow_speed
return mid_speed
def update_lift(self):
lift_speed = self.pick_speed(8, 4, 2)
lift_vel = (self.lift_up - self.lift_down) * lift_speed
self.cozmo.move_lift(lift_vel)
def update_head(self):
if not self.is_mouse_look_enabled:
head_speed = self.pick_speed(2, 1, 0.5)
head_vel = (self.head_up - self.head_down) * head_speed
self.cozmo.move_head(head_vel)
def scale_deadzone(self, value, deadzone, maximum):
if math.fabs(value) > deadzone:
adjustment = math.copysign(deadzone, value)
scaleFactor = maximum / (maximum - deadzone)
return (value - adjustment) * scaleFactor
else:
return 0
def update_gyro_driving(self):
pitch, yaw, roll = self.cozmo.device_gyro.euler_angles
# these are multiplied by 2 because 90 degress feels better for full velocity than 180 degrees
drive_dir = self.scale_deadzone(pitch/math.pi, _gyro_driving_deadzone_ratio, 1) * 2
turn_dir = self.scale_deadzone(roll/math.pi, _gyro_driving_deadzone_ratio, 1) * 2
forward_speed = 250
turn_speed = 250
wheel_acceleration = 250
l_wheel_speed = (drive_dir * forward_speed) + (turn_speed * turn_dir)
r_wheel_speed = (drive_dir * forward_speed) - (turn_speed * turn_dir)
self.cozmo.drive_wheels(l_wheel_speed, r_wheel_speed, wheel_acceleration, wheel_acceleration)
def update_mouse_driving(self):
drive_dir = (self.drive_forwards - self.drive_back)
if (drive_dir > 0.1) and self.cozmo.is_on_charger:
# cozmo is stuck on the charger, and user is trying to drive off - issue an explicit drive off action
try:
# don't wait for action to complete - we don't want to block the other updates (camera etc.)
self.cozmo.drive_off_charger_contacts()
except cozmo.exceptions.RobotBusy:
# Robot is busy doing another action - try again next time we get a drive impulse
pass
turn_dir = (self.turn_right - self.turn_left) + self.mouse_dir
if drive_dir < 0:
# It feels more natural to turn the opposite way when reversing
turn_dir = -turn_dir
forward_speed = self.pick_speed(150, 75, 50)
turn_speed = self.pick_speed(100, 50, 30)
l_wheel_speed = (drive_dir * forward_speed) + (turn_speed * turn_dir)
r_wheel_speed = (drive_dir * forward_speed) - (turn_speed * turn_dir)
self.cozmo.drive_wheels(l_wheel_speed, r_wheel_speed, l_wheel_speed*4, r_wheel_speed*4 )
def get_anim_sel_drop_down(selectorIndex):
html_text = '''<select onchange="handleDropDownSelect(this)" name="animSelector''' + str(selectorIndex) + '''">'''
i = 0
for anim_name in remote_control_cozmo.anim_names:
is_selected_item = (i == remote_control_cozmo.anim_index_for_key[selectorIndex])
selected_text = ''' selected="selected"''' if is_selected_item else ""
html_text += '''<option value=''' + str(i) + selected_text + '''>''' + anim_name + '''</option>'''
i += 1
html_text += '''</select>'''
return html_text
def get_anim_sel_drop_downs():
html_text = ""
for i in range(10):
# list keys 1..9,0 as that's the layout on the keyboard
key = i+1 if (i<9) else 0
html_text += str(key) + ''': ''' + get_anim_sel_drop_down(key) + '''<br>'''
return html_text
def to_js_bool_string(bool_value):
return "true" if bool_value else "false"
@flask_app.route("/")
def handle_index_page():
return '''
<html>
<head>
<title>remote_control_cozmo.py display</title>
</head>
<body>
<h1>Remote Control Cozmo</h1>
<table>
<tr>
<td valign = top>
<div id="cozmoImageMicrosoftWarning" style="display: none;color: #ff9900; text-align: center;">Video feed performance is better in Chrome or Firefox due to mjpeg limitations in this browser</div>
<img src="cozmoImage" id="cozmoImageId" width=640 height=480>
<div id="DebugInfoId"></div>
</td>
<td width=30></td>
<td valign=top>
<h2>Controls:</h2>
<h3>Driving:</h3>
<b>W A S D</b> : Drive Forwards / Left / Back / Right<br><br>
<b>Q</b> : Toggle Mouse Look: <button id="mouseLookId" onClick=onMouseLookButtonClicked(this) style="font-size: 14px">Default</button><br>
<b>Mouse</b> : Move in browser window to aim<br>
(steer and head angle)<br>
(similar to an FPS game)<br>
<br>
<b>T</b> : Move Head Up<br>
<b>G</b> : Move Head Down<br>
<h3>Lift:</h3>
<b>R</b> : Move Lift Up<br>
<b>F</b>: Move Lift Down<br>
<h3>General:</h3>
<b>Shift</b> : Hold to Move Faster (Driving, Head and Lift)<br>
<b>Alt</b> : Hold to Move Slower (Driving, Head and Lift)<br>
<b>L</b> : Toggle IR Headlight: <button id="headlightId" onClick=onHeadlightButtonClicked(this) style="font-size: 14px">Default</button><br>
<b>O</b> : Toggle Debug Annotations: <button id="debugAnnotationsId" onClick=onDebugAnnotationsButtonClicked(this) style="font-size: 14px">Default</button><br>
<b>P</b> : Toggle Free Play mode: <button id="freeplayId" onClick=onFreeplayButtonClicked(this) style="font-size: 14px">Default</button><br>
<b>Y</b> : Toggle Device Gyro mode: <button id="deviceGyroId" onClick=onDeviceGyroButtonClicked(this) style="font-size: 14px">Default</button><br>
<h3>Play Animations</h3>
<b>0 .. 9</b> : Play Animation mapped to that key<br>
<h3>Talk</h3>
<b>Space</b> : Say <input type="text" name="sayText" id="sayTextId" value="''' + remote_control_cozmo.text_to_say + '''" onchange=handleTextInput(this)>
</td>
<td width=30></td>
<td valign=top>
<h2>Animation key mappings:</h2>
''' + get_anim_sel_drop_downs() + '''<br>
</td>
</tr>
</table>
<script type="text/javascript">
var gLastClientX = -1
var gLastClientY = -1
var gIsMouseLookEnabled = '''+ to_js_bool_string(_is_mouse_look_enabled_by_default) + '''
var gAreDebugAnnotationsEnabled = '''+ str(_display_debug_annotations) + '''
var gIsHeadlightEnabled = false
var gIsFreeplayEnabled = false
var gIsDeviceGyroEnabled = false
var gUserAgent = window.navigator.userAgent;
var gIsMicrosoftBrowser = gUserAgent.indexOf('MSIE ') > 0 || gUserAgent.indexOf('Trident/') > 0 || gUserAgent.indexOf('Edge/') > 0;
var gSkipFrame = false;
if (gIsMicrosoftBrowser) {
document.getElementById("cozmoImageMicrosoftWarning").style.display = "block";
}
function postHttpRequest(url, dataSet)
{
var xhr = new XMLHttpRequest();
xhr.open("POST", url, true);
xhr.send( JSON.stringify( dataSet ) );
}
function updateCozmo()
{
if (gIsMicrosoftBrowser && !gSkipFrame) {
// IE doesn't support MJPEG, so we need to ping the server for more images.
// Though, if this happens too frequently, the controls will be unresponsive.
gSkipFrame = true;
document.getElementById("cozmoImageId").src="cozmoImage?" + (new Date()).getTime();
} else if (gSkipFrame) {
gSkipFrame = false;
}
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {
if (xhr.readyState == XMLHttpRequest.DONE) {
document.getElementById("DebugInfoId").innerHTML = xhr.responseText
}
}
xhr.open("POST", "updateCozmo", true);
xhr.send( null );
setTimeout(updateCozmo , 60);
}
setTimeout(updateCozmo , 60);
function updateButtonEnabledText(button, isEnabled)
{
button.firstChild.data = isEnabled ? "Enabled" : "Disabled";
}
function onMouseLookButtonClicked(button)
{
gIsMouseLookEnabled = !gIsMouseLookEnabled;
updateButtonEnabledText(button, gIsMouseLookEnabled);
isMouseLookEnabled = gIsMouseLookEnabled
postHttpRequest("setMouseLookEnabled", {isMouseLookEnabled})
}
function updateDebugAnnotationButtonEnabledText(button, isEnabled)
{
switch(gAreDebugAnnotationsEnabled)
{
case 0:
button.firstChild.data = "Disabled";
break;
case 1:
button.firstChild.data = "Enabled (vision)";
break;
case 2:
button.firstChild.data = "Enabled (all)";
break;
default:
button.firstChild.data = "ERROR";
break;
}
}
function onDebugAnnotationsButtonClicked(button)
{
gAreDebugAnnotationsEnabled += 1;
if (gAreDebugAnnotationsEnabled > 2)
{
gAreDebugAnnotationsEnabled = 0
}
updateDebugAnnotationButtonEnabledText(button, gAreDebugAnnotationsEnabled)
areDebugAnnotationsEnabled = gAreDebugAnnotationsEnabled
postHttpRequest("setAreDebugAnnotationsEnabled", {areDebugAnnotationsEnabled})
}
function onHeadlightButtonClicked(button)
{
gIsHeadlightEnabled = !gIsHeadlightEnabled;
updateButtonEnabledText(button, gIsHeadlightEnabled);
isHeadlightEnabled = gIsHeadlightEnabled
postHttpRequest("setHeadlightEnabled", {isHeadlightEnabled})
}
function onFreeplayButtonClicked(button)
{
gIsFreeplayEnabled = !gIsFreeplayEnabled;
updateButtonEnabledText(button, gIsFreeplayEnabled);
isFreeplayEnabled = gIsFreeplayEnabled
postHttpRequest("setFreeplayEnabled", {isFreeplayEnabled})
}
function onDeviceGyroButtonClicked(button)
{
gIsDeviceGyroEnabled = !gIsDeviceGyroEnabled;
updateButtonEnabledText(button, gIsDeviceGyroEnabled);
isDeviceGyroEnabled = gIsDeviceGyroEnabled
postHttpRequest("setDeviceGyroEnabled", {isDeviceGyroEnabled})
}
updateButtonEnabledText(document.getElementById("mouseLookId"), gIsMouseLookEnabled);
updateButtonEnabledText(document.getElementById("headlightId"), gIsHeadlightEnabled);
updateDebugAnnotationButtonEnabledText(document.getElementById("debugAnnotationsId"), gAreDebugAnnotationsEnabled);
updateButtonEnabledText(document.getElementById("freeplayId"), gIsFreeplayEnabled);
updateButtonEnabledText(document.getElementById("deviceGyroId"), gIsDeviceGyroEnabled);
function handleDropDownSelect(selectObject)
{
selectedIndex = selectObject.selectedIndex
itemName = selectObject.name
postHttpRequest("dropDownSelect", {selectedIndex, itemName});
}
function handleKeyActivity (e, actionType)
{
var keyCode = (e.keyCode ? e.keyCode : e.which);
var hasShift = (e.shiftKey ? 1 : 0)
var hasCtrl = (e.ctrlKey ? 1 : 0)
var hasAlt = (e.altKey ? 1 : 0)
if (actionType=="keyup")
{
if (keyCode == 76) // 'L'
{
// Simulate a click of the headlight button
onHeadlightButtonClicked(document.getElementById("headlightId"))
}
else if (keyCode == 79) // 'O'
{
// Simulate a click of the debug annotations button
onDebugAnnotationsButtonClicked(document.getElementById("debugAnnotationsId"))
}
else if (keyCode == 80) // 'P'
{
// Simulate a click of the debug annotations button
onFreeplayButtonClicked(document.getElementById("freeplayId"))
}
else if (keyCode == 81) // 'Q'
{
// Simulate a click of the mouse look button
onMouseLookButtonClicked(document.getElementById("mouseLookId"))
}
else if (keyCode == 89) // 'Y'
{
// Simulate a click of the device gyro button
onDeviceGyroButtonClicked(document.getElementById("deviceGyroId"))
}
}
postHttpRequest(actionType, {keyCode, hasShift, hasCtrl, hasAlt})
}
function handleMouseActivity (e, actionType)
{
var clientX = e.clientX / document.body.clientWidth // 0..1 (left..right)
var clientY = e.clientY / document.body.clientHeight // 0..1 (top..bottom)
var isButtonDown = e.which && (e.which != 0) ? 1 : 0
var deltaX = (gLastClientX >= 0) ? (clientX - gLastClientX) : 0.0
var deltaY = (gLastClientY >= 0) ? (clientY - gLastClientY) : 0.0
gLastClientX = clientX
gLastClientY = clientY
postHttpRequest(actionType, {clientX, clientY, isButtonDown, deltaX, deltaY})
}
function handleTextInput(textField)
{
textEntered = textField.value
postHttpRequest("sayText", {textEntered})
}
document.addEventListener("keydown", function(e) { handleKeyActivity(e, "keydown") } );
document.addEventListener("keyup", function(e) { handleKeyActivity(e, "keyup") } );
document.addEventListener("mousemove", function(e) { handleMouseActivity(e, "mousemove") } );
function stopEventPropagation(event)
{
if (event.stopPropagation)
{
event.stopPropagation();
}
else
{
event.cancelBubble = true
}
}
document.getElementById("sayTextId").addEventListener("keydown", function(event) {
stopEventPropagation(event);
} );
document.getElementById("sayTextId").addEventListener("keyup", function(event) {
stopEventPropagation(event);
} );
</script>
</body>
</html>
'''
def get_annotated_image():
image = remote_control_cozmo.cozmo.world.latest_image
if _display_debug_annotations != DEBUG_ANNOTATIONS_DISABLED:
image = image.annotate_image(scale=2)
else:
image = image.raw_image
return image
def streaming_video(url_root):
'''Video streaming generator function'''
try:
while True:
if remote_control_cozmo:
image = get_annotated_image()
img_io = io.BytesIO()
image.save(img_io, 'PNG')
img_io.seek(0)
yield (b'--frame\r\n'
b'Content-Type: image/png\r\n\r\n' + img_io.getvalue() + b'\r\n')
else:
asyncio.sleep(.1)
except cozmo.exceptions.SDKShutdown:
# Tell the main flask thread to shutdown
requests.post(url_root + 'shutdown')
def serve_single_image():
if remote_control_cozmo:
try:
image = get_annotated_image()
if image:
return flask_helpers.serve_pil_image(image)
except cozmo.exceptions.SDKShutdown:
requests.post('shutdown')
return flask_helpers.serve_pil_image(_default_camera_image)
def is_microsoft_browser(request):
agent = request.user_agent.string
return 'Edge/' in agent or 'MSIE ' in agent or 'Trident/' in agent
@flask_app.route("/cozmoImage")
def handle_cozmoImage():
if is_microsoft_browser(request):
return serve_single_image()
return flask_helpers.stream_video(streaming_video, request.url_root)
def handle_key_event(key_request, is_key_down):
message = json.loads(key_request.data.decode("utf-8"))
if remote_control_cozmo:
remote_control_cozmo.handle_key(key_code=(message['keyCode']), is_shift_down=message['hasShift'],
is_ctrl_down=message['hasCtrl'], is_alt_down=message['hasAlt'],
is_key_down=is_key_down)
return ""
@flask_app.route('/shutdown', methods=['POST'])
def shutdown():
flask_helpers.shutdown_flask(request)
return ""
@flask_app.route('/mousemove', methods=['POST'])
def handle_mousemove():
'''Called from Javascript whenever mouse moves'''
message = json.loads(request.data.decode("utf-8"))
if remote_control_cozmo:
remote_control_cozmo.handle_mouse(mouse_x=(message['clientX']), mouse_y=message['clientY'],
delta_x=message['deltaX'], delta_y=message['deltaY'],
is_button_down=message['isButtonDown'])
return ""
@flask_app.route('/setMouseLookEnabled', methods=['POST'])
def handle_setMouseLookEnabled():
'''Called from Javascript whenever mouse-look mode is toggled'''
message = json.loads(request.data.decode("utf-8"))
if remote_control_cozmo:
remote_control_cozmo.set_mouse_look_enabled(is_mouse_look_enabled=message['isMouseLookEnabled'])
return ""
@flask_app.route('/setHeadlightEnabled', methods=['POST'])
def handle_setHeadlightEnabled():
'''Called from Javascript whenever headlight is toggled on/off'''
message = json.loads(request.data.decode("utf-8"))
if remote_control_cozmo:
remote_control_cozmo.cozmo.set_head_light(enable=message['isHeadlightEnabled'])
return ""
@flask_app.route('/setAreDebugAnnotationsEnabled', methods=['POST'])
def handle_setAreDebugAnnotationsEnabled():
'''Called from Javascript whenever debug-annotations mode is toggled'''
message = json.loads(request.data.decode("utf-8"))
global _display_debug_annotations
_display_debug_annotations = message['areDebugAnnotationsEnabled']
if remote_control_cozmo:
if _display_debug_annotations == DEBUG_ANNOTATIONS_ENABLED_ALL:
remote_control_cozmo.cozmo.world.image_annotator.enable_annotator('robotState')
else:
remote_control_cozmo.cozmo.world.image_annotator.disable_annotator('robotState')
return ""
@flask_app.route('/setFreeplayEnabled', methods=['POST'])
def handle_setFreeplayEnabled():
'''Called from Javascript whenever freeplay mode is toggled on/off'''
message = json.loads(request.data.decode("utf-8"))
if remote_control_cozmo:
isFreeplayEnabled = message['isFreeplayEnabled']
if isFreeplayEnabled:
remote_control_cozmo.cozmo.start_freeplay_behaviors()
else:
remote_control_cozmo.cozmo.stop_freeplay_behaviors()
return ""
@flask_app.route('/setDeviceGyroEnabled', methods=['POST'])
def handle_setDeviceGyroEnabled():
'''Called from Javascript whenever device gyro mode is toggled on/off'''
message = json.loads(request.data.decode("utf-8"))
if remote_control_cozmo:
is_device_gyro_enabled = message['isDeviceGyroEnabled']
if is_device_gyro_enabled:
remote_control_cozmo.is_device_gyro_mode_enabled = True
else:
remote_control_cozmo.is_device_gyro_mode_enabled = False
# stop movement when turning off gyro mode
remote_control_cozmo.cozmo.drive_wheels(0, 0, 0, 0)
return ""
@flask_app.route('/keydown', methods=['POST'])
def handle_keydown():
'''Called from Javascript whenever a key is down (note: can generate repeat calls if held down)'''
return handle_key_event(request, is_key_down=True)
@flask_app.route('/keyup', methods=['POST'])
def handle_keyup():
'''Called from Javascript whenever a key is released'''
return handle_key_event(request, is_key_down=False)
@flask_app.route('/dropDownSelect', methods=['POST'])
def handle_dropDownSelect():
'''Called from Javascript whenever an animSelector dropdown menu is selected (i.e. modified)'''
message = json.loads(request.data.decode("utf-8"))
item_name_prefix = "animSelector"
item_name = message['itemName']
if remote_control_cozmo and item_name.startswith(item_name_prefix):
item_name_index = int(item_name[len(item_name_prefix):])
remote_control_cozmo.set_anim(item_name_index, message['selectedIndex'])
return ""
@flask_app.route('/sayText', methods=['POST'])
def handle_sayText():
'''Called from Javascript whenever the saytext text field is modified'''
message = json.loads(request.data.decode("utf-8"))
if remote_control_cozmo:
remote_control_cozmo.text_to_say = message['textEntered']
return ""
@flask_app.route('/updateCozmo', methods=['POST'])
def handle_updateCozmo():
if remote_control_cozmo:
remote_control_cozmo.update()
action_queue_text = ""
i = 1
for action in remote_control_cozmo.action_queue:
action_queue_text += str(i) + ": " + remote_control_cozmo.action_to_text(action) + "<br>"
i += 1
return '''Action Queue:<br>''' + action_queue_text + '''
'''
return ""
def run(sdk_conn):
robot = sdk_conn.wait_for_robot()
robot.world.image_annotator.add_annotator('robotState', RobotStateDisplay)
robot.enable_device_imu(True, True, True)
global remote_control_cozmo
remote_control_cozmo = RemoteControlCozmo(robot)
# Turn on image receiving by the camera
robot.camera.image_stream_enabled = True
flask_helpers.run_flask(flask_app)
if __name__ == '__main__':
cozmo.setup_basic_logging()
cozmo.robot.Robot.drive_off_charger_on_connect = False # RC can drive off charger if required
try:
cozmo.connect(run)
except KeyboardInterrupt as e:
pass
except cozmo.ConnectionError as e:
sys.exit("A connection error occurred: %s" % e)
Fin
相關文章
- Cozmo人工智慧機器人SDK使用筆記(1)-基礎部分basics人工智慧機器人筆記
- Cozmo人工智慧機器人SDK使用筆記(3)-視覺部分vision人工智慧機器人筆記視覺
- Cozmo人工智慧機器人SDK使用筆記(2)-顯示部分face人工智慧機器人筆記
- Cozmo人工智慧機器人SDK使用筆記(9)-判斷部分if_this_then_that人工智慧機器人筆記
- Cozmo人工智慧機器人SDK使用筆記(4)-任務部分cubes_and_objects人工智慧機器人筆記Object
- Cozmo人工智慧機器人SDK使用筆記(6)-並行部分Parallel_Action人工智慧機器人筆記並行Parallel
- Cozmo人工智慧機器人SDK使用筆記(5)-時序部分async_sync人工智慧機器人筆記
- Cozmo人工智慧機器人SDK使用筆記(7)-補充說明人工智慧機器人筆記
- Vector人工智慧機器人SDK使用筆記人工智慧機器人筆記
- Cozmo人工智慧機器人SDK使用筆記(X)-總結- |人工智慧基礎(中小學版)實踐平臺|人工智慧機器人筆記
- Anki Cozmo(Vector)人工智慧機器人玩具部分文件人工智慧機器人
- ROS2GO之手機連線Cozmo人工智慧機器人玩具ROSGo人工智慧機器人
- Cozmo人工智慧機器人玩具/教具完整版中文說明書和介紹(附應用下載連結)人工智慧機器人
- Cozmo機器人使用中文Scratch3程式設計案例(codelab)機器人程式設計
- Tello無人機的使用筆記之dji-sdk/Tello-Python無人機筆記Python
- Cozmo機器人脫離智慧手機使用的不完全攻略機器人
- ROS2GO+Cozmo=口袋機器人之人工智慧模擬和實驗平臺ROSGo機器人人工智慧
- Power Apps 人員選擇器元件APP元件
- 【機器學習】支援向量機(個人筆記)機器學習筆記
- 解讀人工智慧機器人演算法戰的軍事應用人工智慧機器人演算法
- Electron+GithubAPI打造個人筆記應用GithubAPI筆記
- 吳恩達機器學習筆記 —— 11 應用機器學習的建議吳恩達機器學習筆記
- 技術筆記(8)git的部分進階功能筆記Git
- 透過機器人應用視覺機器人視覺
- 關於聊天機器人的閱讀筆記機器人筆記
- 十速微控制器應用筆記筆記
- 計算機網路-應用層筆記計算機網路筆記
- Cozmo+Python+ROS+AI會產生什麼樣的奇妙反應呢? (玩Cozmo機器人,學Python程式設計,掌握ROS和AI技術)PythonROSAI機器人程式設計
- 使用Azure API Management, Functions, Power Apps和Logic App構建應用APIFunctionAPP
- 讀人工智慧時代與人類未來筆記06_機器學習的力量人工智慧筆記機器學習
- Power Apps 應用實戰|輕鬆用 Power Apps 開發員工休假考勤管理小程式APP
- 《深入理解Java虛擬機器》個人筆記Java虛擬機筆記
- 吳恩達機器學習筆記 —— 8 正則化吳恩達機器學習筆記
- Redis In Action 筆記(五):使用 Redis 支援應用程式Redis筆記
- 智慧機器人 -- Socket.IO應用小結機器人
- Git筆記-部分命令Git筆記
- k8s學習筆記一(搭建&部署helloworld應用)K8S筆記
- Vector人工智慧情感機器人SDK釋出和說明(ROS2GO 2.0 + Vector 2.0)人工智慧機器人ROSGo