深度殘差網路+自適應引數化ReLU啟用函式(調參記錄3)
續上一篇:
深度殘差網路+自適應引數化ReLU啟用函式(調參記錄2)
https://blog.csdn.net/dangqing1988/article/details/105595917
本文繼續測試深度殘差網路和自適應引數化ReLU啟用函式在Cifar10影像集上的表現,殘差模組仍然是27個,卷積核的個數分別增加到16個、32個和64個,迭代次數從1000個epoch減到了500個epoch(主要是為了節省時間)。
自適應引數化ReLU是Parametric ReLU的升級版本,如下圖所示:
具體Keras程式碼如下:
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 14 04:17:45 2020 Implemented using TensorFlow 1.10.0 and Keras 2.2.1 Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht, Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458 @author: Minghang Zhao """ from __future__ import print_function import keras import numpy as np from keras.datasets import cifar10 from keras.layers import Dense, Conv2D, BatchNormalization, Activation, Minimum from keras.layers import AveragePooling2D, Input, GlobalAveragePooling2D, Concatenate, Reshape from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras import optimizers from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import LearningRateScheduler K.set_learning_phase(1) # The data, split between train and test sets (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Noised data x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_test = x_test-np.mean(x_train) x_train = x_train-np.mean(x_train) print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) # Schedule the learning rate, multiply 0.1 every 200 epoches def scheduler(epoch): if epoch % 200 == 0 and epoch != 0: lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, lr * 0.1) print("lr changed to {}".format(lr * 0.1)) return K.get_value(model.optimizer.lr) # An adaptively parametric rectifier linear unit (APReLU) def aprelu(inputs): # get the number of channels channels = inputs.get_shape().as_list()[-1] # get a zero feature map zeros_input = keras.layers.subtract([inputs, inputs]) # get a feature map with only positive features pos_input = Activation('relu')(inputs) # get a feature map with only negative features neg_input = Minimum()([inputs,zeros_input]) # define a network to obtain the scaling coefficients scales_p = GlobalAveragePooling2D()(pos_input) scales_n = GlobalAveragePooling2D()(neg_input) scales = Concatenate()([scales_n, scales_p]) scales = Dense(channels//4, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales) scales = BatchNormalization()(scales) scales = Activation('relu')(scales) scales = Dense(channels, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales) scales = BatchNormalization()(scales) scales = Activation('sigmoid')(scales) scales = Reshape((1,1,channels))(scales) # apply a paramtetric relu neg_part = keras.layers.multiply([scales, neg_input]) return keras.layers.add([pos_input, neg_part]) # Residual Block def residual_block(incoming, nb_blocks, out_channels, downsample=False, downsample_strides=2): residual = incoming in_channels = incoming.get_shape().as_list()[-1] for i in range(nb_blocks): identity = residual if not downsample: downsample_strides = 1 residual = BatchNormalization()(residual) residual = aprelu(residual) residual = Conv2D(out_channels, 3, strides=(downsample_strides, downsample_strides), padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) residual = BatchNormalization()(residual) residual = aprelu(residual) residual = Conv2D(out_channels, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) # Downsampling if downsample_strides > 1: identity = AveragePooling2D(pool_size=(1,1), strides=(2,2))(identity) # Zero_padding to match channels if in_channels != out_channels: zeros_identity = keras.layers.subtract([identity, identity]) identity = keras.layers.concatenate([identity, zeros_identity]) in_channels = out_channels residual = keras.layers.add([residual, identity]) return residual # define and train a model inputs = Input(shape=(32, 32, 3)) net = Conv2D(16, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(inputs) net = residual_block(net, 9, 16, downsample=False) net = residual_block(net, 1, 32, downsample=True) net = residual_block(net, 8, 32, downsample=False) net = residual_block(net, 1, 64, downsample=True) net = residual_block(net, 8, 64, downsample=False) net = BatchNormalization()(net) net = aprelu(net) net = GlobalAveragePooling2D()(net) outputs = Dense(10, activation='softmax', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(net) model = Model(inputs=inputs, outputs=outputs) sgd = optimizers.SGD(lr=0.1, decay=0., momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) # data augmentation datagen = ImageDataGenerator( # randomly rotate images in the range (deg 0 to 180) rotation_range=30, # randomly flip images horizontal_flip=True, # randomly shift images horizontally width_shift_range=0.125, # randomly shift images vertically height_shift_range=0.125) reduce_lr = LearningRateScheduler(scheduler) # fit the model on the batches generated by datagen.flow(). model.fit_generator(datagen.flow(x_train, y_train, batch_size=100), validation_data=(x_test, y_test), epochs=500, verbose=1, callbacks=[reduce_lr], workers=4) # get results K.set_learning_phase(0) DRSN_train_score1 = model.evaluate(x_train, y_train, batch_size=100, verbose=0) print('Train loss:', DRSN_train_score1[0]) print('Train accuracy:', DRSN_train_score1[1]) DRSN_test_score1 = model.evaluate(x_test, y_test, batch_size=100, verbose=0) print('Test loss:', DRSN_test_score1[0]) print('Test accuracy:', DRSN_test_score1[1])
實驗結果如下:
Using TensorFlow backend. x_train shape: (50000, 32, 32, 3) 50000 train samples 10000 test samples Epoch 1/500 500/500 [==============================] - 91s 181ms/step - loss: 2.4539 - acc: 0.4100 - val_loss: 2.0730 - val_acc: 0.5339 Epoch 2/500 500/500 [==============================] - 63s 126ms/step - loss: 1.9860 - acc: 0.5463 - val_loss: 1.7375 - val_acc: 0.6207 Epoch 3/500 500/500 [==============================] - 63s 126ms/step - loss: 1.7263 - acc: 0.6070 - val_loss: 1.5633 - val_acc: 0.6542 Epoch 4/500 500/500 [==============================] - 63s 126ms/step - loss: 1.5410 - acc: 0.6480 - val_loss: 1.4049 - val_acc: 0.6839 Epoch 5/500 500/500 [==============================] - 63s 126ms/step - loss: 1.4072 - acc: 0.6701 - val_loss: 1.3024 - val_acc: 0.7038 Epoch 6/500 500/500 [==============================] - 63s 126ms/step - loss: 1.2918 - acc: 0.6950 - val_loss: 1.1935 - val_acc: 0.7256 Epoch 7/500 500/500 [==============================] - 63s 126ms/step - loss: 1.1959 - acc: 0.7151 - val_loss: 1.0884 - val_acc: 0.7488 Epoch 8/500 500/500 [==============================] - 63s 126ms/step - loss: 1.1186 - acc: 0.7316 - val_loss: 1.0709 - val_acc: 0.7462 Epoch 9/500 500/500 [==============================] - 63s 126ms/step - loss: 1.0602 - acc: 0.7459 - val_loss: 0.9674 - val_acc: 0.7760 Epoch 10/500 500/500 [==============================] - 63s 126ms/step - loss: 1.0074 - acc: 0.7569 - val_loss: 0.9300 - val_acc: 0.7801 Epoch 11/500 500/500 [==============================] - 63s 126ms/step - loss: 0.9667 - acc: 0.7662 - val_loss: 0.9094 - val_acc: 0.7894 Epoch 12/500 500/500 [==============================] - 64s 127ms/step - loss: 0.9406 - acc: 0.7689 - val_loss: 0.8765 - val_acc: 0.7899 Epoch 13/500 500/500 [==============================] - 63s 127ms/step - loss: 0.9083 - acc: 0.7775 - val_loss: 0.8589 - val_acc: 0.7949 Epoch 14/500 500/500 [==============================] - 63s 127ms/step - loss: 0.8872 - acc: 0.7832 - val_loss: 0.8389 - val_acc: 0.7997 Epoch 15/500 500/500 [==============================] - 63s 127ms/step - loss: 0.8653 - acc: 0.7877 - val_loss: 0.8390 - val_acc: 0.7990 Epoch 16/500 500/500 [==============================] - 63s 126ms/step - loss: 0.8529 - acc: 0.7901 - val_loss: 0.8052 - val_acc: 0.8061 Epoch 17/500 500/500 [==============================] - 63s 126ms/step - loss: 0.8347 - acc: 0.7964 - val_loss: 0.8033 - val_acc: 0.8101 Epoch 18/500 500/500 [==============================] - 63s 126ms/step - loss: 0.8186 - acc: 0.8014 - val_loss: 0.7835 - val_acc: 0.8171 Epoch 19/500 500/500 [==============================] - 63s 126ms/step - loss: 0.8080 - acc: 0.8026 - val_loss: 0.7852 - val_acc: 0.8172 Epoch 20/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7982 - acc: 0.8070 - val_loss: 0.7596 - val_acc: 0.8249 Epoch 21/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7932 - acc: 0.8079 - val_loss: 0.7477 - val_acc: 0.8266 Epoch 22/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7862 - acc: 0.8106 - val_loss: 0.7489 - val_acc: 0.8285 Epoch 23/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7762 - acc: 0.8145 - val_loss: 0.7451 - val_acc: 0.8301 Epoch 24/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7691 - acc: 0.8174 - val_loss: 0.7402 - val_acc: 0.8271 Epoch 25/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7651 - acc: 0.8207 - val_loss: 0.7442 - val_acc: 0.8316 Epoch 26/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7562 - acc: 0.8218 - val_loss: 0.7177 - val_acc: 0.8392 Epoch 27/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7521 - acc: 0.8241 - val_loss: 0.7243 - val_acc: 0.8356 Epoch 28/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7436 - acc: 0.8254 - val_loss: 0.7505 - val_acc: 0.8289 Epoch 29/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7429 - acc: 0.8265 - val_loss: 0.7424 - val_acc: 0.8292 Epoch 30/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7391 - acc: 0.8313 - val_loss: 0.7185 - val_acc: 0.8392 Epoch 31/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7361 - acc: 0.8323 - val_loss: 0.7276 - val_acc: 0.8406 Epoch 32/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7311 - acc: 0.8343 - val_loss: 0.7167 - val_acc: 0.8405 Epoch 33/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7247 - acc: 0.8346 - val_loss: 0.7345 - val_acc: 0.8382 Epoch 34/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7196 - acc: 0.8378 - val_loss: 0.7058 - val_acc: 0.8481 Epoch 35/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7132 - acc: 0.8400 - val_loss: 0.7212 - val_acc: 0.8457 Epoch 36/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7112 - acc: 0.8436 - val_loss: 0.7031 - val_acc: 0.8496 Epoch 37/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7101 - acc: 0.8429 - val_loss: 0.7199 - val_acc: 0.8421 Epoch 38/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7093 - acc: 0.8439 - val_loss: 0.6786 - val_acc: 0.8550 Epoch 39/500 500/500 [==============================] - 63s 126ms/step - loss: 0.7026 - acc: 0.8453 - val_loss: 0.7023 - val_acc: 0.8474 Epoch 40/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6992 - acc: 0.8470 - val_loss: 0.6993 - val_acc: 0.8491 Epoch 41/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6955 - acc: 0.8485 - val_loss: 0.7176 - val_acc: 0.8447 Epoch 42/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6987 - acc: 0.8471 - val_loss: 0.7265 - val_acc: 0.8433 Epoch 43/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6953 - acc: 0.8504 - val_loss: 0.6921 - val_acc: 0.8523 Epoch 44/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6875 - acc: 0.8522 - val_loss: 0.6824 - val_acc: 0.8584 Epoch 45/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6888 - acc: 0.8518 - val_loss: 0.6953 - val_acc: 0.8534 Epoch 46/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6816 - acc: 0.8538 - val_loss: 0.7102 - val_acc: 0.8492 Epoch 47/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6857 - acc: 0.8545 - val_loss: 0.6985 - val_acc: 0.8504 Epoch 48/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6835 - acc: 0.8533 - val_loss: 0.6992 - val_acc: 0.8540 Epoch 49/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6775 - acc: 0.8568 - val_loss: 0.6907 - val_acc: 0.8543 Epoch 50/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6782 - acc: 0.8554 - val_loss: 0.7010 - val_acc: 0.8504 Epoch 51/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6756 - acc: 0.8561 - val_loss: 0.6905 - val_acc: 0.8544 Epoch 52/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6730 - acc: 0.8581 - val_loss: 0.6838 - val_acc: 0.8568 Epoch 53/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6681 - acc: 0.8595 - val_loss: 0.6835 - val_acc: 0.8578 Epoch 54/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6691 - acc: 0.8593 - val_loss: 0.6691 - val_acc: 0.8647 Epoch 55/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6637 - acc: 0.8627 - val_loss: 0.6778 - val_acc: 0.8580 Epoch 56/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6661 - acc: 0.8620 - val_loss: 0.6654 - val_acc: 0.8639 Epoch 57/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6623 - acc: 0.8618 - val_loss: 0.6829 - val_acc: 0.8580 Epoch 58/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6626 - acc: 0.8636 - val_loss: 0.6701 - val_acc: 0.8610 Epoch 59/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6584 - acc: 0.8625 - val_loss: 0.6879 - val_acc: 0.8538 Epoch 60/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6530 - acc: 0.8653 - val_loss: 0.6670 - val_acc: 0.8641 Epoch 61/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6563 - acc: 0.8655 - val_loss: 0.6671 - val_acc: 0.8639 Epoch 62/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6543 - acc: 0.8656 - val_loss: 0.6792 - val_acc: 0.8620 Epoch 63/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6549 - acc: 0.8653 - val_loss: 0.6826 - val_acc: 0.8581 Epoch 64/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6477 - acc: 0.8696 - val_loss: 0.6842 - val_acc: 0.8599 Epoch 65/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6556 - acc: 0.8649 - val_loss: 0.6681 - val_acc: 0.8625 Epoch 66/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6463 - acc: 0.8690 - val_loss: 0.6611 - val_acc: 0.8673 Epoch 67/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6462 - acc: 0.8703 - val_loss: 0.6766 - val_acc: 0.8605 Epoch 68/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6420 - acc: 0.8705 - val_loss: 0.6551 - val_acc: 0.8687 Epoch 69/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6353 - acc: 0.8737 - val_loss: 0.6761 - val_acc: 0.8635 Epoch 70/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6473 - acc: 0.8699 - val_loss: 0.6616 - val_acc: 0.8684 Epoch 71/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6335 - acc: 0.8743 - val_loss: 0.6712 - val_acc: 0.8656 Epoch 72/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6325 - acc: 0.8738 - val_loss: 0.6801 - val_acc: 0.8604 Epoch 73/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6378 - acc: 0.8719 - val_loss: 0.6607 - val_acc: 0.8678 Epoch 74/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6355 - acc: 0.8743 - val_loss: 0.6568 - val_acc: 0.8671 Epoch 75/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6344 - acc: 0.8744 - val_loss: 0.6646 - val_acc: 0.8646 Epoch 76/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6283 - acc: 0.8745 - val_loss: 0.6571 - val_acc: 0.8703 Epoch 77/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6291 - acc: 0.8763 - val_loss: 0.6789 - val_acc: 0.8638 Epoch 78/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6291 - acc: 0.8781 - val_loss: 0.6485 - val_acc: 0.8708 Epoch 79/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6285 - acc: 0.8779 - val_loss: 0.6366 - val_acc: 0.8758 Epoch 80/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6310 - acc: 0.8755 - val_loss: 0.6587 - val_acc: 0.8710 Epoch 81/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6265 - acc: 0.8770 - val_loss: 0.6511 - val_acc: 0.8685 Epoch 82/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6246 - acc: 0.8784 - val_loss: 0.6405 - val_acc: 0.8742 Epoch 83/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6283 - acc: 0.8772 - val_loss: 0.6565 - val_acc: 0.8701 Epoch 84/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6225 - acc: 0.8778 - val_loss: 0.6565 - val_acc: 0.8731 Epoch 85/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6185 - acc: 0.8810 - val_loss: 0.6819 - val_acc: 0.8586 Epoch 86/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6241 - acc: 0.8792 - val_loss: 0.6703 - val_acc: 0.8685 Epoch 87/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6194 - acc: 0.8811 - val_loss: 0.6514 - val_acc: 0.8705 Epoch 88/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6159 - acc: 0.8798 - val_loss: 0.6401 - val_acc: 0.8764 Epoch 89/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6196 - acc: 0.8794 - val_loss: 0.6436 - val_acc: 0.8739 Epoch 90/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6144 - acc: 0.8817 - val_loss: 0.6491 - val_acc: 0.8718 Epoch 91/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6180 - acc: 0.8813 - val_loss: 0.6449 - val_acc: 0.8758 Epoch 92/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6091 - acc: 0.8822 - val_loss: 0.6465 - val_acc: 0.8758 Epoch 93/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6172 - acc: 0.8825 - val_loss: 0.6414 - val_acc: 0.8754 Epoch 94/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6110 - acc: 0.8822 - val_loss: 0.6582 - val_acc: 0.8710 Epoch 95/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6170 - acc: 0.8820 - val_loss: 0.6572 - val_acc: 0.8704 Epoch 96/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6132 - acc: 0.8843 - val_loss: 0.6744 - val_acc: 0.8656 Epoch 97/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6127 - acc: 0.8824 - val_loss: 0.6296 - val_acc: 0.8795 Epoch 98/500 500/500 [==============================] - 63s 126ms/step - loss: 0.6056 - acc: 0.8857 - val_loss: 0.6586 - val_acc: 0.8738 Epoch 99/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6131 - acc: 0.8831 - val_loss: 0.6579 - val_acc: 0.8719 Epoch 100/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6076 - acc: 0.8846 - val_loss: 0.6507 - val_acc: 0.8716 Epoch 101/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6082 - acc: 0.8849 - val_loss: 0.6661 - val_acc: 0.8717 Epoch 102/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6117 - acc: 0.8836 - val_loss: 0.6860 - val_acc: 0.8612 Epoch 103/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6068 - acc: 0.8861 - val_loss: 0.6470 - val_acc: 0.8776 Epoch 104/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6063 - acc: 0.8872 - val_loss: 0.6613 - val_acc: 0.8679 Epoch 105/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6042 - acc: 0.8844 - val_loss: 0.6494 - val_acc: 0.8781 Epoch 106/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6036 - acc: 0.8871 - val_loss: 0.6507 - val_acc: 0.8717 Epoch 107/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6039 - acc: 0.8859 - val_loss: 0.6332 - val_acc: 0.8822 Epoch 108/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6054 - acc: 0.8865 - val_loss: 0.6511 - val_acc: 0.8737 Epoch 109/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6038 - acc: 0.8864 - val_loss: 0.6591 - val_acc: 0.8708 Epoch 110/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5994 - acc: 0.8888 - val_loss: 0.6289 - val_acc: 0.8843 Epoch 111/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5970 - acc: 0.8882 - val_loss: 0.6455 - val_acc: 0.8778 Epoch 112/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5990 - acc: 0.8878 - val_loss: 0.6369 - val_acc: 0.8788 Epoch 113/500 500/500 [==============================] - 64s 127ms/step - loss: 0.6001 - acc: 0.8880 - val_loss: 0.6324 - val_acc: 0.8834 Epoch 114/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5944 - acc: 0.8893 - val_loss: 0.6233 - val_acc: 0.8844 Epoch 115/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5906 - acc: 0.8915 - val_loss: 0.6327 - val_acc: 0.8781 Epoch 116/500 500/500 [==============================] - 63s 127ms/step - loss: 0.6013 - acc: 0.8870 - val_loss: 0.6265 - val_acc: 0.8827 Epoch 117/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5928 - acc: 0.8915 - val_loss: 0.6423 - val_acc: 0.8766 Epoch 118/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5988 - acc: 0.8878 - val_loss: 0.6609 - val_acc: 0.8695 Epoch 119/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5920 - acc: 0.8909 - val_loss: 0.6242 - val_acc: 0.8846 Epoch 120/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5941 - acc: 0.8894 - val_loss: 0.6528 - val_acc: 0.8716 Epoch 121/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5939 - acc: 0.8895 - val_loss: 0.6338 - val_acc: 0.8806 Epoch 122/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5936 - acc: 0.8900 - val_loss: 0.6290 - val_acc: 0.8827 Epoch 123/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5937 - acc: 0.8891 - val_loss: 0.6471 - val_acc: 0.8693 Epoch 124/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5900 - acc: 0.8902 - val_loss: 0.6098 - val_acc: 0.8911 Epoch 125/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5854 - acc: 0.8933 - val_loss: 0.6445 - val_acc: 0.8757 Epoch 126/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5913 - acc: 0.8898 - val_loss: 0.6354 - val_acc: 0.8824 Epoch 127/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5927 - acc: 0.8893 - val_loss: 0.6420 - val_acc: 0.8843 Epoch 128/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5926 - acc: 0.8901 - val_loss: 0.6244 - val_acc: 0.8825 Epoch 129/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5879 - acc: 0.8906 - val_loss: 0.6230 - val_acc: 0.8849 Epoch 130/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5917 - acc: 0.8908 - val_loss: 0.6428 - val_acc: 0.8771 Epoch 131/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5861 - acc: 0.8920 - val_loss: 0.6582 - val_acc: 0.8761 Epoch 132/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5857 - acc: 0.8934 - val_loss: 0.6353 - val_acc: 0.8792 Epoch 133/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5868 - acc: 0.8926 - val_loss: 0.6154 - val_acc: 0.8878 Epoch 134/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5869 - acc: 0.8932 - val_loss: 0.6369 - val_acc: 0.8805 Epoch 135/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5853 - acc: 0.8934 - val_loss: 0.6133 - val_acc: 0.8832 Epoch 136/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5818 - acc: 0.8944 - val_loss: 0.6538 - val_acc: 0.8751 Epoch 137/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5801 - acc: 0.8937 - val_loss: 0.6478 - val_acc: 0.8733 Epoch 138/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5788 - acc: 0.8955 - val_loss: 0.6310 - val_acc: 0.8805 Epoch 139/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5828 - acc: 0.8926 - val_loss: 0.6172 - val_acc: 0.8869 Epoch 140/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5828 - acc: 0.8944 - val_loss: 0.6508 - val_acc: 0.8762 Epoch 141/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5856 - acc: 0.8934 - val_loss: 0.6242 - val_acc: 0.8797 Epoch 142/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5815 - acc: 0.8944 - val_loss: 0.6483 - val_acc: 0.8749 Epoch 143/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5807 - acc: 0.8964 - val_loss: 0.6374 - val_acc: 0.8789 Epoch 144/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5810 - acc: 0.8943 - val_loss: 0.6414 - val_acc: 0.8782 Epoch 145/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5807 - acc: 0.8959 - val_loss: 0.6279 - val_acc: 0.8783 Epoch 146/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5784 - acc: 0.8967 - val_loss: 0.6179 - val_acc: 0.8827 Epoch 147/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5754 - acc: 0.8948 - val_loss: 0.6358 - val_acc: 0.8791 Epoch 148/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5764 - acc: 0.8960 - val_loss: 0.6279 - val_acc: 0.8828 Epoch 149/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5749 - acc: 0.8965 - val_loss: 0.6513 - val_acc: 0.8770 Epoch 150/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5791 - acc: 0.8964 - val_loss: 0.6436 - val_acc: 0.8795 Epoch 151/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5786 - acc: 0.8959 - val_loss: 0.6276 - val_acc: 0.8807 Epoch 152/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5761 - acc: 0.8952 - val_loss: 0.6359 - val_acc: 0.8821 Epoch 153/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5729 - acc: 0.8967 - val_loss: 0.6416 - val_acc: 0.8779 Epoch 154/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5742 - acc: 0.8982 - val_loss: 0.6312 - val_acc: 0.8819 Epoch 155/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5750 - acc: 0.8973 - val_loss: 0.6173 - val_acc: 0.8856 Epoch 156/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5722 - acc: 0.8972 - val_loss: 0.6239 - val_acc: 0.8850 Epoch 157/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5760 - acc: 0.8963 - val_loss: 0.6322 - val_acc: 0.8807 Epoch 158/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5759 - acc: 0.8967 - val_loss: 0.6482 - val_acc: 0.8718 Epoch 159/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5696 - acc: 0.8991 - val_loss: 0.6134 - val_acc: 0.8857 Epoch 160/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5722 - acc: 0.8986 - val_loss: 0.6347 - val_acc: 0.8787 Epoch 161/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5712 - acc: 0.8986 - val_loss: 0.6508 - val_acc: 0.8753 Epoch 162/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5757 - acc: 0.8968 - val_loss: 0.6117 - val_acc: 0.8860 Epoch 163/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5679 - acc: 0.8992 - val_loss: 0.6201 - val_acc: 0.8843 Epoch 164/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5672 - acc: 0.9005 - val_loss: 0.6270 - val_acc: 0.8822 Epoch 165/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5703 - acc: 0.8994 - val_loss: 0.6234 - val_acc: 0.8832 Epoch 166/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5704 - acc: 0.8982 - val_loss: 0.6396 - val_acc: 0.8781 Epoch 167/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5731 - acc: 0.8973 - val_loss: 0.6287 - val_acc: 0.8836 Epoch 168/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5674 - acc: 0.8997 - val_loss: 0.6274 - val_acc: 0.8840 Epoch 169/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5710 - acc: 0.8963 - val_loss: 0.6319 - val_acc: 0.8833 Epoch 170/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5677 - acc: 0.8996 - val_loss: 0.6248 - val_acc: 0.8873 Epoch 171/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5713 - acc: 0.8987 - val_loss: 0.6324 - val_acc: 0.8819 Epoch 172/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5674 - acc: 0.9004 - val_loss: 0.6259 - val_acc: 0.8849 Epoch 173/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5743 - acc: 0.8967 - val_loss: 0.6394 - val_acc: 0.8796 Epoch 174/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5656 - acc: 0.8995 - val_loss: 0.6117 - val_acc: 0.8833 Epoch 175/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5643 - acc: 0.9009 - val_loss: 0.6178 - val_acc: 0.8855 Epoch 176/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5660 - acc: 0.9002 - val_loss: 0.6457 - val_acc: 0.8772 Epoch 177/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5715 - acc: 0.8991 - val_loss: 0.6284 - val_acc: 0.8854 Epoch 178/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5704 - acc: 0.9005 - val_loss: 0.6210 - val_acc: 0.8829 Epoch 179/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5669 - acc: 0.9010 - val_loss: 0.6091 - val_acc: 0.8868 Epoch 180/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5695 - acc: 0.8991 - val_loss: 0.6315 - val_acc: 0.8817 Epoch 181/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5679 - acc: 0.8981 - val_loss: 0.5973 - val_acc: 0.8885 Epoch 182/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5633 - acc: 0.9011 - val_loss: 0.6239 - val_acc: 0.8797 Epoch 183/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5621 - acc: 0.9014 - val_loss: 0.6133 - val_acc: 0.8911 Epoch 184/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5660 - acc: 0.9004 - val_loss: 0.6123 - val_acc: 0.8871 Epoch 185/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5676 - acc: 0.8983 - val_loss: 0.6330 - val_acc: 0.8801 Epoch 186/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5647 - acc: 0.9008 - val_loss: 0.6295 - val_acc: 0.8816 Epoch 187/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5637 - acc: 0.9005 - val_loss: 0.6291 - val_acc: 0.8801 Epoch 188/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5629 - acc: 0.9009 - val_loss: 0.6170 - val_acc: 0.8846 Epoch 189/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5616 - acc: 0.9013 - val_loss: 0.6206 - val_acc: 0.8827 Epoch 190/500 500/500 [==============================] - 64s 127ms/step - loss: 0.5678 - acc: 0.8990 - val_loss: 0.6226 - val_acc: 0.8805 Epoch 191/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5613 - acc: 0.9008 - val_loss: 0.6092 - val_acc: 0.8865 Epoch 192/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5601 - acc: 0.9025 - val_loss: 0.6156 - val_acc: 0.8890 Epoch 193/500 500/500 [==============================] - 63s 127ms/step - loss: 0.5608 - acc: 0.9018 - val_loss: 0.6255 - val_acc: 0.8846 Epoch 194/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5668 - acc: 0.8993 - val_loss: 0.6239 - val_acc: 0.8812 Epoch 195/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5576 - acc: 0.9034 - val_loss: 0.6230 - val_acc: 0.8844 Epoch 196/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5642 - acc: 0.9002 - val_loss: 0.6197 - val_acc: 0.8853 Epoch 197/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5651 - acc: 0.8991 - val_loss: 0.6171 - val_acc: 0.8885 Epoch 198/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5602 - acc: 0.9028 - val_loss: 0.6147 - val_acc: 0.8872 Epoch 199/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5635 - acc: 0.9023 - val_loss: 0.6115 - val_acc: 0.8878 Epoch 200/500 500/500 [==============================] - 63s 126ms/step - loss: 0.5618 - acc: 0.9015 - val_loss: 0.6213 - val_acc: 0.8853 Epoch 201/500 lr changed to 0.010000000149011612 500/500 [==============================] - 63s 127ms/step - loss: 0.4599 - acc: 0.9378 - val_loss: 0.5280 - val_acc: 0.9159 Epoch 202/500 500/500 [==============================] - 63s 126ms/step - loss: 0.4110 - acc: 0.9526 - val_loss: 0.5197 - val_acc: 0.9206 Epoch 203/500 500/500 [==============================] - 63s 127ms/step - loss: 0.3926 - acc: 0.9573 - val_loss: 0.5123 - val_acc: 0.9200 Epoch 204/500 500/500 [==============================] - 63s 127ms/step - loss: 0.3759 - acc: 0.9617 - val_loss: 0.5096 - val_acc: 0.9201 Epoch 205/500 500/500 [==============================] - 63s 126ms/step - loss: 0.3625 - acc: 0.9633 - val_loss: 0.5113 - val_acc: 0.9201 Epoch 206/500 500/500 [==============================] - 63s 126ms/step - loss: 0.3524 - acc: 0.9660 - val_loss: 0.5002 - val_acc: 0.9227 Epoch 207/500 500/500 [==============================] - 63s 126ms/step - loss: 0.3444 - acc: 0.9675 - val_loss: 0.5007 - val_acc: 0.9229 Epoch 208/500 500/500 [==============================] - 63s 126ms/step - loss: 0.3388 - acc: 0.9678 - val_loss: 0.4948 - val_acc: 0.9221 Epoch 209/500 500/500 [==============================] - 63s 127ms/step - loss: 0.3282 - acc: 0.9700 - val_loss: 0.4957 - val_acc: 0.9231 Epoch 210/500 500/500 [==============================] - 63s 126ms/step - loss: 0.3192 - acc: 0.9722 - val_loss: 0.4946 - val_acc: 0.9216 Epoch 211/500 500/500 [==============================] - 63s 126ms/step - loss: 0.3153 - acc: 0.9713 - val_loss: 0.4878 - val_acc: 0.9205 Epoch 212/500 500/500 [==============================] - 63s 126ms/step - loss: 0.3066 - acc: 0.9731 - val_loss: 0.4880 - val_acc: 0.9222 Epoch 213/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2996 - acc: 0.9739 - val_loss: 0.4867 - val_acc: 0.9219 Epoch 214/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2968 - acc: 0.9750 - val_loss: 0.4878 - val_acc: 0.9208 Epoch 215/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2880 - acc: 0.9757 - val_loss: 0.4854 - val_acc: 0.9226 Epoch 216/500 500/500 [==============================] - 64s 127ms/step - loss: 0.2832 - acc: 0.9755 - val_loss: 0.4865 - val_acc: 0.9207 Epoch 217/500 500/500 [==============================] - 63s 127ms/step - loss: 0.2759 - acc: 0.9780 - val_loss: 0.4830 - val_acc: 0.9209 Epoch 218/500 500/500 [==============================] - 63s 127ms/step - loss: 0.2751 - acc: 0.9766 - val_loss: 0.4798 - val_acc: 0.9231 Epoch 219/500 500/500 [==============================] - 63s 127ms/step - loss: 0.2701 - acc: 0.9775 - val_loss: 0.4781 - val_acc: 0.9228 Epoch 220/500 500/500 [==============================] - 64s 127ms/step - loss: 0.2676 - acc: 0.9767 - val_loss: 0.4748 - val_acc: 0.9217 Epoch 221/500 500/500 [==============================] - 64s 127ms/step - loss: 0.2580 - acc: 0.9790 - val_loss: 0.4820 - val_acc: 0.9205 Epoch 222/500 500/500 [==============================] - 64s 127ms/step - loss: 0.2552 - acc: 0.9793 - val_loss: 0.4761 - val_acc: 0.9210 Epoch 223/500 500/500 [==============================] - 63s 127ms/step - loss: 0.2510 - acc: 0.9797 - val_loss: 0.4766 - val_acc: 0.9215 Epoch 224/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2500 - acc: 0.9791 - val_loss: 0.4754 - val_acc: 0.9184 Epoch 225/500 500/500 [==============================] - 63s 127ms/step - loss: 0.2453 - acc: 0.9793 - val_loss: 0.4659 - val_acc: 0.9233 Epoch 226/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2424 - acc: 0.9795 - val_loss: 0.4714 - val_acc: 0.9227 Epoch 227/500 500/500 [==============================] - 63s 127ms/step - loss: 0.2367 - acc: 0.9804 - val_loss: 0.4790 - val_acc: 0.9169 Epoch 228/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2381 - acc: 0.9791 - val_loss: 0.4642 - val_acc: 0.9222 Epoch 229/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2304 - acc: 0.9814 - val_loss: 0.4627 - val_acc: 0.9201 Epoch 230/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2281 - acc: 0.9812 - val_loss: 0.4662 - val_acc: 0.9167 Epoch 231/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2260 - acc: 0.9810 - val_loss: 0.4733 - val_acc: 0.9164 Epoch 232/500 500/500 [==============================] - 63s 127ms/step - loss: 0.2270 - acc: 0.9799 - val_loss: 0.4643 - val_acc: 0.9190 Epoch 233/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2190 - acc: 0.9817 - val_loss: 0.4691 - val_acc: 0.9160 Epoch 234/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2189 - acc: 0.9815 - val_loss: 0.4615 - val_acc: 0.9196 Epoch 235/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2155 - acc: 0.9821 - val_loss: 0.4510 - val_acc: 0.9188 Epoch 236/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2123 - acc: 0.9816 - val_loss: 0.4546 - val_acc: 0.9175 Epoch 237/500 500/500 [==============================] - 63s 126ms/step - loss: 0.2138 - acc: 0.9810 - val_loss: 0.4443 - val_acc: 0.9185 Epoch 238/500 500/500 [==============================] - 63s 127ms/step - loss: 0.2122 - acc: 0.9809 - val_loss: 0.4674 - val_acc: 0.9143
迭代到238次,又無意中按了Ctrl+C,中斷了程式,又沒跑完。準確率已經到了91.43%,估計跑完的話,還能漲一點。然後讓電腦通宵跑程式,自己回家了,結果被同辦公室的老師“幫忙”關了電腦。。。
Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht, Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458
https://ieeexplore.ieee.org/document/8998530
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69972329/viewspace-2687502/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄1)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄2)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄4)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄5)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄6)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄7)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄8)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄9)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄10)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄11)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄12)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄13)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄14)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄15)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄16)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄17)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄26)Cifar10~95.92%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄18)Cifar10~94.28%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄19)Cifar10~93.96%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄23)Cifar10~95.47%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄24)Cifar10~95.80%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄20)Cifar10~94.17%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄22)Cifar10~95.25%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄21)Cifar10~95.12%函式
- 注意力機制下的啟用函式:自適應引數化ReLU函式
- 深度殘差網路(ResNet)
- 深度學習之殘差網路深度學習
- 殘差網路再升級之深度殘差收縮網路(附Keras程式碼)Keras
- 深度殘差收縮網路:(三)網路結構
- 深度學習故障診斷——深度殘差收縮網路深度學習
- 深度殘差收縮網路:(一)背景知識
- 深度殘差收縮網路:(二)整體思路
- 學習筆記16:殘差網路筆記
- 十分鐘弄懂深度殘差收縮網路
- 深度殘差收縮網路:(五)實驗驗證
- 深度殘差收縮網路:(六)程式碼實現
- 從ReLU到GELU,一文概覽神經網路的啟用函式神經網路函式
- PHP函式,引數,可變參函式.PHP函式