深度殘差網路+自適應引數化ReLU啟用函式(調參記錄5)
續上一篇:
深度殘差網路+自適應引數化ReLU啟用函式(調參記錄4)
https://blog.csdn.net/dangqing1988/article/details/105610584
本文繼續測試Adaptively Parametric ReLU(APReLU)啟用函式在Cifar10影像集上的效果,每個殘差模組包含兩個3×3的卷積層,一共有27個殘差模組,卷積核的個數分別是16個、32個和64個。
在APReLU啟用函式中,全連線層的神經元個數,與輸入特徵圖的通道數,保持一致。(這也是原始論文中的設定,在之前的四次調參中,將全連線層的神經元個數,設定成了輸入特徵圖通道數的1/4,想著可以避免過擬合)
其中,自適應引數化ReLU是Parametric ReLU啟用函式的改進版本:
Keras程式碼如下:
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 14 04:17:45 2020 Implemented using TensorFlow 1.10.0 and Keras 2.2.1 Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht, Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458 @author: Minghang Zhao """ from __future__ import print_function import keras import numpy as np from keras.datasets import cifar10 from keras.layers import Dense, Conv2D, BatchNormalization, Activation, Minimum from keras.layers import AveragePooling2D, Input, GlobalAveragePooling2D, Concatenate, Reshape from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras import optimizers from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import LearningRateScheduler K.set_learning_phase(1) # The data, split between train and test sets (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Noised data x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_test = x_test-np.mean(x_train) x_train = x_train-np.mean(x_train) print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) # Schedule the learning rate, multiply 0.1 every 200 epoches def scheduler(epoch): if epoch % 200 == 0 and epoch != 0: lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, lr * 0.1) print("lr changed to {}".format(lr * 0.1)) return K.get_value(model.optimizer.lr) # An adaptively parametric rectifier linear unit (APReLU) def aprelu(inputs): # get the number of channels channels = inputs.get_shape().as_list()[-1] # get a zero feature map zeros_input = keras.layers.subtract([inputs, inputs]) # get a feature map with only positive features pos_input = Activation('relu')(inputs) # get a feature map with only negative features neg_input = Minimum()([inputs,zeros_input]) # define a network to obtain the scaling coefficients scales_p = GlobalAveragePooling2D()(pos_input) scales_n = GlobalAveragePooling2D()(neg_input) scales = Concatenate()([scales_n, scales_p]) scales = Dense(channels, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales) scales = BatchNormalization()(scales) scales = Activation('relu')(scales) scales = Dense(channels, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales) scales = BatchNormalization()(scales) scales = Activation('sigmoid')(scales) scales = Reshape((1,1,channels))(scales) # apply a paramtetric relu neg_part = keras.layers.multiply([scales, neg_input]) return keras.layers.add([pos_input, neg_part]) # Residual Block def residual_block(incoming, nb_blocks, out_channels, downsample=False, downsample_strides=2): residual = incoming in_channels = incoming.get_shape().as_list()[-1] for i in range(nb_blocks): identity = residual if not downsample: downsample_strides = 1 residual = BatchNormalization()(residual) residual = aprelu(residual) residual = Conv2D(out_channels, 3, strides=(downsample_strides, downsample_strides), padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) residual = BatchNormalization()(residual) residual = aprelu(residual) residual = Conv2D(out_channels, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) # Downsampling if downsample_strides > 1: identity = AveragePooling2D(pool_size=(1,1), strides=(2,2))(identity) # Zero_padding to match channels if in_channels != out_channels: zeros_identity = keras.layers.subtract([identity, identity]) identity = keras.layers.concatenate([identity, zeros_identity]) in_channels = out_channels residual = keras.layers.add([residual, identity]) return residual # define and train a model inputs = Input(shape=(32, 32, 3)) net = Conv2D(16, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(inputs) net = residual_block(net, 9, 16, downsample=False) net = residual_block(net, 1, 32, downsample=True) net = residual_block(net, 8, 32, downsample=False) net = residual_block(net, 1, 64, downsample=True) net = residual_block(net, 8, 64, downsample=False) net = BatchNormalization()(net) net = aprelu(net) net = GlobalAveragePooling2D()(net) outputs = Dense(10, activation='softmax', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(net) model = Model(inputs=inputs, outputs=outputs) sgd = optimizers.SGD(lr=0.1, decay=0., momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) # data augmentation datagen = ImageDataGenerator( # randomly rotate images in the range (deg 0 to 180) rotation_range=30, # randomly flip images horizontal_flip=True, # randomly shift images horizontally width_shift_range=0.125, # randomly shift images vertically height_shift_range=0.125) reduce_lr = LearningRateScheduler(scheduler) # fit the model on the batches generated by datagen.flow(). model.fit_generator(datagen.flow(x_train, y_train, batch_size=100), validation_data=(x_test, y_test), epochs=500, verbose=1, callbacks=[reduce_lr], workers=4) # get results K.set_learning_phase(0) DRSN_train_score1 = model.evaluate(x_train, y_train, batch_size=100, verbose=0) print('Train loss:', DRSN_train_score1[0]) print('Train accuracy:', DRSN_train_score1[1]) DRSN_test_score1 = model.evaluate(x_test, y_test, batch_size=100, verbose=0) print('Test loss:', DRSN_test_score1[0]) print('Test accuracy:', DRSN_test_score1[1])
實驗結果如下(前254個epoch的結果,在spyder視窗裡不顯示了):
Epoch 255/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1883 - acc: 0.9839 - val_loss: 0.4781 - val_acc: 0.9102 Epoch 256/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1862 - acc: 0.9842 - val_loss: 0.4776 - val_acc: 0.9114 Epoch 257/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1860 - acc: 0.9830 - val_loss: 0.4627 - val_acc: 0.9150 Epoch 258/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1809 - acc: 0.9847 - val_loss: 0.4602 - val_acc: 0.9123 Epoch 259/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1820 - acc: 0.9836 - val_loss: 0.4704 - val_acc: 0.9113 Epoch 260/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1843 - acc: 0.9829 - val_loss: 0.4656 - val_acc: 0.9110 Epoch 261/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1777 - acc: 0.9855 - val_loss: 0.4682 - val_acc: 0.9113 Epoch 262/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1821 - acc: 0.9827 - val_loss: 0.4697 - val_acc: 0.9126 Epoch 263/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1773 - acc: 0.9839 - val_loss: 0.4607 - val_acc: 0.9108 Epoch 264/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1751 - acc: 0.9848 - val_loss: 0.4596 - val_acc: 0.9123 Epoch 265/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1753 - acc: 0.9840 - val_loss: 0.4695 - val_acc: 0.9090 Epoch 266/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1793 - acc: 0.9826 - val_loss: 0.4642 - val_acc: 0.9104 Epoch 267/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1745 - acc: 0.9842 - val_loss: 0.4540 - val_acc: 0.9134 Epoch 268/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1764 - acc: 0.9835 - val_loss: 0.4707 - val_acc: 0.9105 Epoch 269/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1780 - acc: 0.9822 - val_loss: 0.4477 - val_acc: 0.9134 Epoch 270/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1762 - acc: 0.9825 - val_loss: 0.4677 - val_acc: 0.9110 Epoch 271/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1735 - acc: 0.9835 - val_loss: 0.4532 - val_acc: 0.9133 Epoch 272/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1733 - acc: 0.9833 - val_loss: 0.4501 - val_acc: 0.9154 Epoch 273/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1684 - acc: 0.9847 - val_loss: 0.4520 - val_acc: 0.9119 Epoch 274/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1745 - acc: 0.9822 - val_loss: 0.4507 - val_acc: 0.9142 Epoch 275/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1726 - acc: 0.9826 - val_loss: 0.4537 - val_acc: 0.9118 Epoch 276/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1722 - acc: 0.9826 - val_loss: 0.4514 - val_acc: 0.9109 Epoch 277/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1762 - acc: 0.9808 - val_loss: 0.4654 - val_acc: 0.9096 Epoch 278/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1709 - acc: 0.9837 - val_loss: 0.4556 - val_acc: 0.9081 Epoch 279/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1685 - acc: 0.9836 - val_loss: 0.4474 - val_acc: 0.9151 Epoch 280/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1692 - acc: 0.9828 - val_loss: 0.4597 - val_acc: 0.9106 Epoch 281/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1722 - acc: 0.9815 - val_loss: 0.4582 - val_acc: 0.9070 Epoch 282/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1728 - acc: 0.9813 - val_loss: 0.4625 - val_acc: 0.9085 Epoch 283/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1695 - acc: 0.9818 - val_loss: 0.4460 - val_acc: 0.9123 Epoch 284/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1710 - acc: 0.9812 - val_loss: 0.4481 - val_acc: 0.9132 Epoch 285/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1720 - acc: 0.9819 - val_loss: 0.4575 - val_acc: 0.9079 Epoch 286/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1709 - acc: 0.9814 - val_loss: 0.4417 - val_acc: 0.9118 Epoch 287/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1678 - acc: 0.9821 - val_loss: 0.4432 - val_acc: 0.9143 Epoch 288/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1679 - acc: 0.9824 - val_loss: 0.4468 - val_acc: 0.9111 Epoch 289/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1690 - acc: 0.9818 - val_loss: 0.4449 - val_acc: 0.9140 Epoch 290/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1664 - acc: 0.9825 - val_loss: 0.4552 - val_acc: 0.9098 Epoch 291/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1688 - acc: 0.9815 - val_loss: 0.4412 - val_acc: 0.9128 Epoch 292/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1673 - acc: 0.9819 - val_loss: 0.4430 - val_acc: 0.9100 Epoch 293/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1666 - acc: 0.9833 - val_loss: 0.4490 - val_acc: 0.9121 Epoch 294/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1677 - acc: 0.9818 - val_loss: 0.4471 - val_acc: 0.9114 Epoch 295/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1635 - acc: 0.9830 - val_loss: 0.4577 - val_acc: 0.9094 Epoch 296/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1670 - acc: 0.9817 - val_loss: 0.4633 - val_acc: 0.9074 Epoch 297/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1660 - acc: 0.9830 - val_loss: 0.4606 - val_acc: 0.9074 Epoch 298/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1678 - acc: 0.9816 - val_loss: 0.4606 - val_acc: 0.9067 Epoch 299/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1629 - acc: 0.9827 - val_loss: 0.4622 - val_acc: 0.9075 Epoch 300/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1629 - acc: 0.9833 - val_loss: 0.4640 - val_acc: 0.9104 Epoch 301/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1685 - acc: 0.9810 - val_loss: 0.4658 - val_acc: 0.9083 Epoch 302/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1657 - acc: 0.9820 - val_loss: 0.4497 - val_acc: 0.9105 Epoch 303/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1657 - acc: 0.9816 - val_loss: 0.4565 - val_acc: 0.9122 Epoch 304/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1668 - acc: 0.9816 - val_loss: 0.4435 - val_acc: 0.9134 Epoch 305/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1679 - acc: 0.9802 - val_loss: 0.4566 - val_acc: 0.9094 Epoch 306/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1609 - acc: 0.9832 - val_loss: 0.4529 - val_acc: 0.9116 Epoch 307/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1666 - acc: 0.9814 - val_loss: 0.4518 - val_acc: 0.9121 Epoch 308/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1617 - acc: 0.9821 - val_loss: 0.4450 - val_acc: 0.9152 Epoch 309/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1664 - acc: 0.9806 - val_loss: 0.4430 - val_acc: 0.9131 Epoch 310/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1624 - acc: 0.9830 - val_loss: 0.4416 - val_acc: 0.9121 Epoch 311/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1619 - acc: 0.9828 - val_loss: 0.4499 - val_acc: 0.9090 Epoch 312/500 500/500 [==============================] - 62s 124ms/step - loss: 0.1658 - acc: 0.9818 - val_loss: 0.4532 - val_acc: 0.9099 Epoch 313/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1653 - acc: 0.9815 - val_loss: 0.4498 - val_acc: 0.9070 Epoch 314/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1650 - acc: 0.9820 - val_loss: 0.4723 - val_acc: 0.9085 Epoch 315/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1646 - acc: 0.9820 - val_loss: 0.4576 - val_acc: 0.9089 Epoch 316/500 500/500 [==============================] - 63s 126ms/step - loss: 0.1628 - acc: 0.9826 - val_loss: 0.4623 - val_acc: 0.9068 Epoch 317/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1660 - acc: 0.9810 - val_loss: 0.4444 - val_acc: 0.9074 Epoch 318/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1653 - acc: 0.9813 - val_loss: 0.4438 - val_acc: 0.9088 Epoch 319/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1640 - acc: 0.9819 - val_loss: 0.4679 - val_acc: 0.9079 Epoch 320/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1626 - acc: 0.9826 - val_loss: 0.4472 - val_acc: 0.9100 Epoch 321/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1630 - acc: 0.9821 - val_loss: 0.4482 - val_acc: 0.9071 Epoch 322/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1606 - acc: 0.9833 - val_loss: 0.4515 - val_acc: 0.9103 Epoch 323/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1636 - acc: 0.9821 - val_loss: 0.4472 - val_acc: 0.9119 Epoch 324/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1633 - acc: 0.9822 - val_loss: 0.4620 - val_acc: 0.9071 Epoch 325/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1627 - acc: 0.9826 - val_loss: 0.4571 - val_acc: 0.9107 Epoch 326/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1629 - acc: 0.9820 - val_loss: 0.4450 - val_acc: 0.9120 Epoch 327/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1643 - acc: 0.9813 - val_loss: 0.4529 - val_acc: 0.9112 Epoch 328/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1619 - acc: 0.9826 - val_loss: 0.4394 - val_acc: 0.9109 Epoch 329/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1616 - acc: 0.9831 - val_loss: 0.4396 - val_acc: 0.9117 Epoch 330/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1614 - acc: 0.9819 - val_loss: 0.4493 - val_acc: 0.9125 Epoch 331/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1619 - acc: 0.9824 - val_loss: 0.4362 - val_acc: 0.9089 Epoch 332/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1609 - acc: 0.9820 - val_loss: 0.4592 - val_acc: 0.9061 Epoch 333/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1621 - acc: 0.9821 - val_loss: 0.4408 - val_acc: 0.9089 Epoch 334/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1605 - acc: 0.9832 - val_loss: 0.4357 - val_acc: 0.9135 Epoch 335/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1645 - acc: 0.9812 - val_loss: 0.4413 - val_acc: 0.9137 Epoch 336/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1607 - acc: 0.9831 - val_loss: 0.4592 - val_acc: 0.9093 Epoch 337/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1667 - acc: 0.9812 - val_loss: 0.4590 - val_acc: 0.9085 Epoch 338/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1639 - acc: 0.9818 - val_loss: 0.4423 - val_acc: 0.9113 Epoch 339/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1622 - acc: 0.9820 - val_loss: 0.4565 - val_acc: 0.9094 Epoch 340/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1589 - acc: 0.9837 - val_loss: 0.4534 - val_acc: 0.9104 Epoch 341/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1636 - acc: 0.9817 - val_loss: 0.4643 - val_acc: 0.9055 Epoch 342/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1599 - acc: 0.9831 - val_loss: 0.4666 - val_acc: 0.9043 Epoch 343/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1629 - acc: 0.9812 - val_loss: 0.4635 - val_acc: 0.9065 Epoch 344/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1592 - acc: 0.9831 - val_loss: 0.4563 - val_acc: 0.9083 Epoch 345/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1634 - acc: 0.9818 - val_loss: 0.4451 - val_acc: 0.9096 Epoch 346/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1664 - acc: 0.9811 - val_loss: 0.4450 - val_acc: 0.9111 Epoch 347/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1624 - acc: 0.9814 - val_loss: 0.4458 - val_acc: 0.9133 Epoch 348/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1594 - acc: 0.9830 - val_loss: 0.4765 - val_acc: 0.9067 Epoch 349/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1595 - acc: 0.9832 - val_loss: 0.4469 - val_acc: 0.9118 Epoch 350/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1603 - acc: 0.9830 - val_loss: 0.4754 - val_acc: 0.9049 Epoch 351/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1615 - acc: 0.9828 - val_loss: 0.4567 - val_acc: 0.9098 Epoch 352/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1615 - acc: 0.9824 - val_loss: 0.4540 - val_acc: 0.9071 Epoch 353/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1628 - acc: 0.9822 - val_loss: 0.4546 - val_acc: 0.9080 Epoch 354/500 500/500 [==============================] - 68s 136ms/step - loss: 0.1610 - acc: 0.9826 - val_loss: 0.4602 - val_acc: 0.9068 Epoch 355/500 500/500 [==============================] - 71s 143ms/step - loss: 0.1659 - acc: 0.9813 - val_loss: 0.4482 - val_acc: 0.9095 Epoch 356/500 500/500 [==============================] - 71s 143ms/step - loss: 0.1602 - acc: 0.9828 - val_loss: 0.4471 - val_acc: 0.9121 Epoch 357/500 500/500 [==============================] - 71s 143ms/step - loss: 0.1578 - acc: 0.9845 - val_loss: 0.4429 - val_acc: 0.9083 Epoch 358/500 500/500 [==============================] - 66s 131ms/step - loss: 0.1609 - acc: 0.9827 - val_loss: 0.4488 - val_acc: 0.9090 Epoch 359/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1558 - acc: 0.9845 - val_loss: 0.4614 - val_acc: 0.9065 Epoch 360/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1646 - acc: 0.9816 - val_loss: 0.4671 - val_acc: 0.9052 Epoch 361/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1621 - acc: 0.9822 - val_loss: 0.4514 - val_acc: 0.9090 Epoch 362/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1605 - acc: 0.9827 - val_loss: 0.4596 - val_acc: 0.9103 Epoch 363/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1579 - acc: 0.9836 - val_loss: 0.4621 - val_acc: 0.9051 Epoch 364/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1593 - acc: 0.9834 - val_loss: 0.4434 - val_acc: 0.9105 Epoch 365/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1586 - acc: 0.9832 - val_loss: 0.4541 - val_acc: 0.9126 Epoch 366/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1595 - acc: 0.9821 - val_loss: 0.4512 - val_acc: 0.9108 Epoch 367/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1584 - acc: 0.9831 - val_loss: 0.4637 - val_acc: 0.9079 Epoch 368/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1589 - acc: 0.9829 - val_loss: 0.4460 - val_acc: 0.9110 Epoch 369/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1586 - acc: 0.9839 - val_loss: 0.4686 - val_acc: 0.9063 Epoch 370/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1601 - acc: 0.9823 - val_loss: 0.4517 - val_acc: 0.9119 Epoch 371/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1547 - acc: 0.9843 - val_loss: 0.4656 - val_acc: 0.9085 Epoch 372/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1569 - acc: 0.9840 - val_loss: 0.4640 - val_acc: 0.9103 Epoch 373/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1640 - acc: 0.9814 - val_loss: 0.4515 - val_acc: 0.9086 Epoch 374/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1613 - acc: 0.9823 - val_loss: 0.4643 - val_acc: 0.9050 Epoch 375/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1625 - acc: 0.9823 - val_loss: 0.4410 - val_acc: 0.9146 Epoch 376/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1606 - acc: 0.9825 - val_loss: 0.4516 - val_acc: 0.9119 Epoch 377/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1573 - acc: 0.9841 - val_loss: 0.4450 - val_acc: 0.9114 Epoch 378/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1640 - acc: 0.9804 - val_loss: 0.4494 - val_acc: 0.9094 Epoch 379/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1643 - acc: 0.9816 - val_loss: 0.4491 - val_acc: 0.9101 Epoch 380/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1578 - acc: 0.9833 - val_loss: 0.4539 - val_acc: 0.9109 Epoch 381/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1577 - acc: 0.9833 - val_loss: 0.4436 - val_acc: 0.9121 Epoch 382/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1597 - acc: 0.9827 - val_loss: 0.4577 - val_acc: 0.9090 Epoch 383/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1635 - acc: 0.9820 - val_loss: 0.4659 - val_acc: 0.9019 Epoch 384/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1600 - acc: 0.9829 - val_loss: 0.4539 - val_acc: 0.9101 Epoch 385/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1581 - acc: 0.9838 - val_loss: 0.4469 - val_acc: 0.9128 Epoch 386/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1569 - acc: 0.9835 - val_loss: 0.4710 - val_acc: 0.9094 Epoch 387/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1622 - acc: 0.9816 - val_loss: 0.4414 - val_acc: 0.9130 Epoch 388/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1572 - acc: 0.9838 - val_loss: 0.4461 - val_acc: 0.9093 Epoch 389/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1581 - acc: 0.9837 - val_loss: 0.4594 - val_acc: 0.9081 Epoch 390/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1582 - acc: 0.9835 - val_loss: 0.4500 - val_acc: 0.9139 Epoch 391/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1584 - acc: 0.9836 - val_loss: 0.4566 - val_acc: 0.9076 Epoch 392/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1599 - acc: 0.9827 - val_loss: 0.4594 - val_acc: 0.9099 Epoch 393/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1618 - acc: 0.9822 - val_loss: 0.4599 - val_acc: 0.9075 Epoch 394/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1573 - acc: 0.9837 - val_loss: 0.4698 - val_acc: 0.9071 Epoch 395/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1599 - acc: 0.9830 - val_loss: 0.4630 - val_acc: 0.9105 Epoch 396/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1586 - acc: 0.9832 - val_loss: 0.4705 - val_acc: 0.9099 Epoch 397/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1591 - acc: 0.9834 - val_loss: 0.4925 - val_acc: 0.9037 Epoch 398/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1575 - acc: 0.9833 - val_loss: 0.4476 - val_acc: 0.9126 Epoch 399/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1571 - acc: 0.9844 - val_loss: 0.4561 - val_acc: 0.9098 Epoch 400/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1592 - acc: 0.9832 - val_loss: 0.4602 - val_acc: 0.9069 Epoch 401/500 lr changed to 0.0009999999776482583 500/500 [==============================] - 63s 125ms/step - loss: 0.1424 - acc: 0.9892 - val_loss: 0.4326 - val_acc: 0.9167 Epoch 402/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1313 - acc: 0.9935 - val_loss: 0.4261 - val_acc: 0.9191 Epoch 403/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1280 - acc: 0.9949 - val_loss: 0.4215 - val_acc: 0.9205 Epoch 404/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1250 - acc: 0.9958 - val_loss: 0.4211 - val_acc: 0.9215 Epoch 405/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1241 - acc: 0.9960 - val_loss: 0.4207 - val_acc: 0.9197 Epoch 406/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1230 - acc: 0.9962 - val_loss: 0.4201 - val_acc: 0.9221 Epoch 407/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1228 - acc: 0.9962 - val_loss: 0.4209 - val_acc: 0.9227 Epoch 408/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1206 - acc: 0.9969 - val_loss: 0.4220 - val_acc: 0.9218 Epoch 409/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1208 - acc: 0.9967 - val_loss: 0.4209 - val_acc: 0.9233 Epoch 410/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1197 - acc: 0.9970 - val_loss: 0.4204 - val_acc: 0.9225 Epoch 411/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1196 - acc: 0.9971 - val_loss: 0.4201 - val_acc: 0.9239 Epoch 412/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1185 - acc: 0.9973 - val_loss: 0.4205 - val_acc: 0.9232 Epoch 413/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1177 - acc: 0.9973 - val_loss: 0.4199 - val_acc: 0.9232 Epoch 414/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1176 - acc: 0.9974 - val_loss: 0.4226 - val_acc: 0.9239 Epoch 415/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1171 - acc: 0.9975 - val_loss: 0.4222 - val_acc: 0.9236 Epoch 416/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1165 - acc: 0.9978 - val_loss: 0.4228 - val_acc: 0.9249 Epoch 417/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1156 - acc: 0.9978 - val_loss: 0.4213 - val_acc: 0.9249 Epoch 418/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1152 - acc: 0.9981 - val_loss: 0.4210 - val_acc: 0.9241 Epoch 419/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1149 - acc: 0.9981 - val_loss: 0.4229 - val_acc: 0.9238 Epoch 420/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1142 - acc: 0.9979 - val_loss: 0.4223 - val_acc: 0.9256 Epoch 421/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1149 - acc: 0.9977 - val_loss: 0.4237 - val_acc: 0.9249 Epoch 422/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1130 - acc: 0.9983 - val_loss: 0.4246 - val_acc: 0.9235 Epoch 423/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1137 - acc: 0.9978 - val_loss: 0.4248 - val_acc: 0.9249 Epoch 424/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1126 - acc: 0.9984 - val_loss: 0.4270 - val_acc: 0.9228 Epoch 425/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1127 - acc: 0.9982 - val_loss: 0.4265 - val_acc: 0.9239 Epoch 426/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1117 - acc: 0.9986 - val_loss: 0.4282 - val_acc: 0.9251 Epoch 427/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1120 - acc: 0.9983 - val_loss: 0.4266 - val_acc: 0.9240 Epoch 428/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1115 - acc: 0.9985 - val_loss: 0.4266 - val_acc: 0.9255 Epoch 429/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1119 - acc: 0.9982 - val_loss: 0.4273 - val_acc: 0.9265 Epoch 430/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1109 - acc: 0.9987 - val_loss: 0.4266 - val_acc: 0.9263 Epoch 431/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1105 - acc: 0.9985 - val_loss: 0.4255 - val_acc: 0.9257 Epoch 432/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1104 - acc: 0.9986 - val_loss: 0.4244 - val_acc: 0.9242 Epoch 433/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1099 - acc: 0.9985 - val_loss: 0.4246 - val_acc: 0.9262 Epoch 434/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1098 - acc: 0.9987 - val_loss: 0.4267 - val_acc: 0.9247 Epoch 435/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1097 - acc: 0.9984 - val_loss: 0.4302 - val_acc: 0.9245 Epoch 436/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1095 - acc: 0.9987 - val_loss: 0.4312 - val_acc: 0.9252 Epoch 437/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1097 - acc: 0.9984 - val_loss: 0.4281 - val_acc: 0.9238 Epoch 438/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1091 - acc: 0.9985 - val_loss: 0.4271 - val_acc: 0.9253 Epoch 439/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1086 - acc: 0.9987 - val_loss: 0.4268 - val_acc: 0.9258 Epoch 440/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1077 - acc: 0.9988 - val_loss: 0.4301 - val_acc: 0.9265 Epoch 441/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1076 - acc: 0.9989 - val_loss: 0.4288 - val_acc: 0.9253 Epoch 442/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1083 - acc: 0.9987 - val_loss: 0.4308 - val_acc: 0.9247 Epoch 443/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1073 - acc: 0.9986 - val_loss: 0.4315 - val_acc: 0.9249 Epoch 444/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1072 - acc: 0.9987 - val_loss: 0.4343 - val_acc: 0.9258 Epoch 445/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1067 - acc: 0.9987 - val_loss: 0.4325 - val_acc: 0.9249 Epoch 446/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1065 - acc: 0.9989 - val_loss: 0.4333 - val_acc: 0.9248 Epoch 447/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1061 - acc: 0.9988 - val_loss: 0.4342 - val_acc: 0.9245 Epoch 448/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1056 - acc: 0.9988 - val_loss: 0.4359 - val_acc: 0.9247 Epoch 449/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1058 - acc: 0.9988 - val_loss: 0.4357 - val_acc: 0.9241 Epoch 450/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1051 - acc: 0.9991 - val_loss: 0.4366 - val_acc: 0.9251 Epoch 451/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1054 - acc: 0.9991 - val_loss: 0.4377 - val_acc: 0.9241 Epoch 452/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1051 - acc: 0.9989 - val_loss: 0.4354 - val_acc: 0.9246 Epoch 453/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1055 - acc: 0.9987 - val_loss: 0.4350 - val_acc: 0.9239 Epoch 454/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1045 - acc: 0.9990 - val_loss: 0.4346 - val_acc: 0.9239 Epoch 455/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1047 - acc: 0.9987 - val_loss: 0.4340 - val_acc: 0.9243 Epoch 456/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1043 - acc: 0.9988 - val_loss: 0.4346 - val_acc: 0.9238 Epoch 457/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1037 - acc: 0.9990 - val_loss: 0.4334 - val_acc: 0.9249 Epoch 458/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1039 - acc: 0.9989 - val_loss: 0.4337 - val_acc: 0.9239 Epoch 459/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1040 - acc: 0.9987 - val_loss: 0.4344 - val_acc: 0.9233 Epoch 460/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1033 - acc: 0.9991 - val_loss: 0.4353 - val_acc: 0.9240 Epoch 461/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1033 - acc: 0.9987 - val_loss: 0.4383 - val_acc: 0.9236 Epoch 462/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1034 - acc: 0.9987 - val_loss: 0.4362 - val_acc: 0.9246 Epoch 463/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1030 - acc: 0.9988 - val_loss: 0.4339 - val_acc: 0.9237 Epoch 464/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1024 - acc: 0.9990 - val_loss: 0.4329 - val_acc: 0.9249 Epoch 465/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1018 - acc: 0.9992 - val_loss: 0.4323 - val_acc: 0.9241 Epoch 466/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1017 - acc: 0.9991 - val_loss: 0.4331 - val_acc: 0.9243 Epoch 467/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1018 - acc: 0.9989 - val_loss: 0.4331 - val_acc: 0.9245 Epoch 468/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1012 - acc: 0.9992 - val_loss: 0.4335 - val_acc: 0.9254 Epoch 469/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1011 - acc: 0.9990 - val_loss: 0.4332 - val_acc: 0.9247 Epoch 470/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1006 - acc: 0.9993 - val_loss: 0.4344 - val_acc: 0.9250 Epoch 471/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1009 - acc: 0.9989 - val_loss: 0.4377 - val_acc: 0.9251 Epoch 472/500 500/500 [==============================] - 62s 125ms/step - loss: 0.1006 - acc: 0.9991 - val_loss: 0.4345 - val_acc: 0.9243 Epoch 473/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1005 - acc: 0.9992 - val_loss: 0.4328 - val_acc: 0.9245 Epoch 474/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1002 - acc: 0.9991 - val_loss: 0.4365 - val_acc: 0.9250 Epoch 475/500 500/500 [==============================] - 63s 125ms/step - loss: 0.1005 - acc: 0.9989 - val_loss: 0.4350 - val_acc: 0.9263 Epoch 476/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0995 - acc: 0.9992 - val_loss: 0.4334 - val_acc: 0.9255 Epoch 477/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0997 - acc: 0.9989 - val_loss: 0.4335 - val_acc: 0.9251 Epoch 478/500 500/500 [==============================] - 62s 125ms/step - loss: 0.0993 - acc: 0.9992 - val_loss: 0.4348 - val_acc: 0.9250 Epoch 479/500 500/500 [==============================] - 62s 125ms/step - loss: 0.0992 - acc: 0.9990 - val_loss: 0.4356 - val_acc: 0.9258 Epoch 480/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0985 - acc: 0.9993 - val_loss: 0.4347 - val_acc: 0.9260 Epoch 481/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0985 - acc: 0.9992 - val_loss: 0.4349 - val_acc: 0.9247 Epoch 482/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0994 - acc: 0.9987 - val_loss: 0.4366 - val_acc: 0.9237 Epoch 483/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0982 - acc: 0.9993 - val_loss: 0.4361 - val_acc: 0.9258 Epoch 484/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0981 - acc: 0.9991 - val_loss: 0.4387 - val_acc: 0.9250 Epoch 485/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0983 - acc: 0.9989 - val_loss: 0.4367 - val_acc: 0.9248 Epoch 486/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0975 - acc: 0.9993 - val_loss: 0.4364 - val_acc: 0.9255 Epoch 487/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0979 - acc: 0.9990 - val_loss: 0.4356 - val_acc: 0.9246 Epoch 488/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0972 - acc: 0.9993 - val_loss: 0.4332 - val_acc: 0.9257 Epoch 489/500 500/500 [==============================] - 62s 125ms/step - loss: 0.0970 - acc: 0.9991 - val_loss: 0.4337 - val_acc: 0.9255 Epoch 490/500 500/500 [==============================] - 62s 125ms/step - loss: 0.0968 - acc: 0.9994 - val_loss: 0.4312 - val_acc: 0.9250 Epoch 491/500 500/500 [==============================] - 62s 125ms/step - loss: 0.0964 - acc: 0.9994 - val_loss: 0.4325 - val_acc: 0.9251 Epoch 492/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0967 - acc: 0.9993 - val_loss: 0.4354 - val_acc: 0.9246 Epoch 493/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0960 - acc: 0.9993 - val_loss: 0.4337 - val_acc: 0.9250 Epoch 494/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0963 - acc: 0.9991 - val_loss: 0.4350 - val_acc: 0.9255 Epoch 495/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0961 - acc: 0.9991 - val_loss: 0.4354 - val_acc: 0.9255 Epoch 496/500 500/500 [==============================] - 62s 125ms/step - loss: 0.0961 - acc: 0.9990 - val_loss: 0.4339 - val_acc: 0.9256 Epoch 497/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0951 - acc: 0.9994 - val_loss: 0.4338 - val_acc: 0.9243 Epoch 498/500 500/500 [==============================] - 62s 125ms/step - loss: 0.0953 - acc: 0.9992 - val_loss: 0.4326 - val_acc: 0.9259 Epoch 499/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0949 - acc: 0.9993 - val_loss: 0.4353 - val_acc: 0.9255 Epoch 500/500 500/500 [==============================] - 63s 125ms/step - loss: 0.0952 - acc: 0.9992 - val_loss: 0.4356 - val_acc: 0.9252 Train loss: 0.09905459056794644 Train accuracy: 0.9974600024223328 Test loss: 0.4356186859309673 Test accuracy: 0.9252000027894973
測試準確率到了92.52%,還不錯。其實訓練集的loss還有下降的趨勢。
Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht, Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458
https://ieeexplore.ieee.org/document/8998530
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69972329/viewspace-2687505/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄1)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄2)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄3)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄4)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄6)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄7)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄8)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄9)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄10)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄11)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄12)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄13)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄14)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄15)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄16)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄17)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄26)Cifar10~95.92%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄18)Cifar10~94.28%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄19)Cifar10~93.96%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄23)Cifar10~95.47%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄24)Cifar10~95.80%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄20)Cifar10~94.17%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄22)Cifar10~95.25%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄21)Cifar10~95.12%函式
- 注意力機制下的啟用函式:自適應引數化ReLU函式
- 深度殘差網路(ResNet)
- 深度學習之殘差網路深度學習
- 殘差網路再升級之深度殘差收縮網路(附Keras程式碼)Keras
- 深度殘差收縮網路:(三)網路結構
- 深度學習故障診斷——深度殘差收縮網路深度學習
- 深度殘差收縮網路:(一)背景知識
- 深度殘差收縮網路:(二)整體思路
- 學習筆記16:殘差網路筆記
- 十分鐘弄懂深度殘差收縮網路
- 深度殘差收縮網路:(五)實驗驗證
- 深度殘差收縮網路:(六)程式碼實現
- 從ReLU到GELU,一文概覽神經網路的啟用函式神經網路函式
- PHP函式,引數,可變參函式.PHP函式