深度殘差網路+自適應引數化ReLU啟用函式(調參記錄21)Cifar10~95.12%

毛利小五郎發表於2020-05-17

本文在調參記錄20的基礎上,將殘差模組的個數,從27個增加到60個,繼續測試深度殘差網路ResNet+自適應引數化ReLU啟用函式在Cifar10資料集上的表現。

自適應引數化ReLU函式被放在了殘差模組的第二個卷積層之後,這與Squeeze-and-Excitation Networks或者深度殘差收縮網路是相似的。其基本原理如下

Keras程式如下:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 14 04:17:45 2020
Implemented using TensorFlow 1.10.0 and Keras 2.2.1
Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht,
Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, 
IEEE Transactions on Industrial Electronics, 2020,  DOI: 10.1109/TIE.2020.2972458 
@author: Minghang Zhao
"""
from __future__ import print_function
import keras
import numpy as np
from keras.datasets import cifar10
from keras.layers import Dense, Conv2D, BatchNormalization, Activation, Minimum
from keras.layers import AveragePooling2D, Input, GlobalAveragePooling2D, Concatenate, Reshape
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler
K.set_learning_phase(1)
# The data, split between train and test sets
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# Noised data
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_test = x_test-np.mean(x_train)
x_train = x_train-np.mean(x_train)
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
# Schedule the learning rate, multiply 0.1 every 150 epoches
def scheduler(epoch):
    if epoch % 150 == 0 and epoch != 0:
        lr = K.get_value(model.optimizer.lr)
        K.set_value(model.optimizer.lr, lr * 0.1)
        print("lr changed to {}".format(lr * 0.1))
    return K.get_value(model.optimizer.lr)
# An adaptively parametric rectifier linear unit (APReLU)
def aprelu(inputs):
    # get the number of channels
    channels = inputs.get_shape().as_list()[-1]
    # get a zero feature map
    zeros_input = keras.layers.subtract([inputs, inputs])
    # get a feature map with only positive features
    pos_input = Activation('relu')(inputs)
    # get a feature map with only negative features
    neg_input = Minimum()([inputs,zeros_input])
    # define a network to obtain the scaling coefficients
    scales_p = GlobalAveragePooling2D()(pos_input)
    scales_n = GlobalAveragePooling2D()(neg_input)
    scales = Concatenate()([scales_n, scales_p])
    scales = Dense(channels//16, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales)
    scales = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(scales)
    scales = Activation('relu')(scales)
    scales = Dense(channels, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales)
    scales = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(scales)
    scales = Activation('sigmoid')(scales)
    scales = Reshape((1,1,channels))(scales)
    # apply a paramtetric relu
    neg_part = keras.layers.multiply([scales, neg_input])
    return keras.layers.add([pos_input, neg_part])
# Residual Block
def residual_block(incoming, nb_blocks, out_channels, downsample=False,
                   downsample_strides=2):
    
    residual = incoming
    in_channels = incoming.get_shape().as_list()[-1]
    
    for i in range(nb_blocks):
        
        identity = residual
        
        if not downsample:
            downsample_strides = 1
        
        residual = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(residual)
        residual = Activation('relu')(residual)
        residual = Conv2D(out_channels, 3, strides=(downsample_strides, downsample_strides), 
                          padding='same', kernel_initializer='he_normal', 
                          kernel_regularizer=l2(1e-4))(residual)
        
        residual = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(residual)
        residual = Activation('relu')(residual)
        residual = Conv2D(out_channels, 3, padding='same', kernel_initializer='he_normal', 
                          kernel_regularizer=l2(1e-4))(residual)
        
        residual = aprelu(residual)
        
        # Downsampling
        if downsample_strides > 1:
            identity = AveragePooling2D(pool_size=(1,1), strides=(2,2))(identity)
            
        # Zero_padding to match channels
        if in_channels != out_channels:
            zeros_identity = keras.layers.subtract([identity, identity])
            identity = keras.layers.concatenate([identity, zeros_identity])
            in_channels = out_channels
        
        residual = keras.layers.add([residual, identity])
    
    return residual
# define and train a model
inputs = Input(shape=(32, 32, 3))
net = Conv2D(16, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(inputs)
net = residual_block(net, 20, 32, downsample=False)
net = residual_block(net, 1, 32, downsample=True)
net = residual_block(net, 19, 32, downsample=False)
net = residual_block(net, 1, 64, downsample=True)
net = residual_block(net, 19, 64, downsample=False)
net = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(net)
net = Activation('relu')(net)
net = GlobalAveragePooling2D()(net)
outputs = Dense(10, activation='softmax', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(net)
model = Model(inputs=inputs, outputs=outputs)
sgd = optimizers.SGD(lr=0.1, decay=0., momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
# data augmentation
datagen = ImageDataGenerator(
    # randomly rotate images in the range (deg 0 to 180)
    rotation_range=30,
    # Range for random zoom
    zoom_range = 0.2,
    # shear angle in counter-clockwise direction in degrees
    shear_range = 30,
    # randomly flip images
    horizontal_flip=True,
    # randomly shift images horizontally
    width_shift_range=0.125,
    # randomly shift images vertically
    height_shift_range=0.125)
reduce_lr = LearningRateScheduler(scheduler)
# fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train, batch_size=100),
                    validation_data=(x_test, y_test), epochs=500, 
                    verbose=1, callbacks=[reduce_lr], workers=4)
# get results
K.set_learning_phase(0)
DRSN_train_score = model.evaluate(x_train, y_train, batch_size=100, verbose=0)
print('Train loss:', DRSN_train_score[0])
print('Train accuracy:', DRSN_train_score[1])
DRSN_test_score = model.evaluate(x_test, y_test, batch_size=100, verbose=0)
print('Test loss:', DRSN_test_score[0])
print('Test accuracy:', DRSN_test_score[1])

實驗結果如下:

Using TensorFlow backend.
x_train shape: (50000, 32, 32, 3)
50000 train samples
10000 test samples
Epoch 1/500
156s 312ms/step - loss: 3.7450 - acc: 0.4151 - val_loss: 3.1432 - val_acc: 0.5763
Epoch 2/500
113s 226ms/step - loss: 2.9954 - acc: 0.5750 - val_loss: 2.5940 - val_acc: 0.6689
Epoch 3/500
113s 226ms/step - loss: 2.5203 - acc: 0.6476 - val_loss: 2.1871 - val_acc: 0.7254
Epoch 4/500
113s 225ms/step - loss: 2.1855 - acc: 0.6865 - val_loss: 1.9171 - val_acc: 0.7488
Epoch 5/500
113s 225ms/step - loss: 1.9224 - acc: 0.7144 - val_loss: 1.6662 - val_acc: 0.7774
Epoch 6/500
113s 225ms/step - loss: 1.7111 - acc: 0.7331 - val_loss: 1.4882 - val_acc: 0.7915
Epoch 7/500
113s 226ms/step - loss: 1.5472 - acc: 0.7483 - val_loss: 1.3414 - val_acc: 0.7994
Epoch 8/500
113s 226ms/step - loss: 1.4095 - acc: 0.7633 - val_loss: 1.2149 - val_acc: 0.8194
Epoch 9/500
113s 226ms/step - loss: 1.3008 - acc: 0.7739 - val_loss: 1.1264 - val_acc: 0.8234
Epoch 10/500
113s 226ms/step - loss: 1.2077 - acc: 0.7824 - val_loss: 1.0474 - val_acc: 0.8322
Epoch 11/500
113s 225ms/step - loss: 1.1382 - acc: 0.7885 - val_loss: 0.9929 - val_acc: 0.8343
Epoch 12/500
113s 225ms/step - loss: 1.0722 - acc: 0.7955 - val_loss: 0.9418 - val_acc: 0.8400
Epoch 13/500
113s 225ms/step - loss: 1.0242 - acc: 0.8032 - val_loss: 0.9018 - val_acc: 0.8421
Epoch 14/500
113s 225ms/step - loss: 0.9843 - acc: 0.8083 - val_loss: 0.8639 - val_acc: 0.8506
Epoch 15/500
113s 225ms/step - loss: 0.9520 - acc: 0.8101 - val_loss: 0.8522 - val_acc: 0.8491
Epoch 16/500
113s 226ms/step - loss: 0.9313 - acc: 0.8130 - val_loss: 0.8124 - val_acc: 0.8541
Epoch 17/500
113s 226ms/step - loss: 0.9033 - acc: 0.8190 - val_loss: 0.8156 - val_acc: 0.8484
Epoch 18/500
113s 226ms/step - loss: 0.8791 - acc: 0.8223 - val_loss: 0.7796 - val_acc: 0.8572
Epoch 19/500
113s 226ms/step - loss: 0.8628 - acc: 0.8289 - val_loss: 0.7842 - val_acc: 0.8559
Epoch 20/500
113s 225ms/step - loss: 0.8528 - acc: 0.8292 - val_loss: 0.7725 - val_acc: 0.8533
Epoch 21/500
113s 225ms/step - loss: 0.8432 - acc: 0.8292 - val_loss: 0.7405 - val_acc: 0.8687
Epoch 22/500
113s 225ms/step - loss: 0.8260 - acc: 0.8347 - val_loss: 0.7425 - val_acc: 0.8648
Epoch 23/500
113s 225ms/step - loss: 0.8180 - acc: 0.8357 - val_loss: 0.7319 - val_acc: 0.8666
Epoch 24/500
113s 226ms/step - loss: 0.8146 - acc: 0.8385 - val_loss: 0.7158 - val_acc: 0.8761
Epoch 25/500
113s 226ms/step - loss: 0.8029 - acc: 0.8387 - val_loss: 0.7228 - val_acc: 0.8705
Epoch 26/500
113s 225ms/step - loss: 0.7968 - acc: 0.8425 - val_loss: 0.7160 - val_acc: 0.8725
Epoch 27/500
113s 225ms/step - loss: 0.7940 - acc: 0.8433 - val_loss: 0.7176 - val_acc: 0.8747
Epoch 28/500
113s 226ms/step - loss: 0.7904 - acc: 0.8439 - val_loss: 0.7080 - val_acc: 0.8747
Epoch 29/500
113s 225ms/step - loss: 0.7810 - acc: 0.8450 - val_loss: 0.7234 - val_acc: 0.8679
Epoch 30/500
113s 225ms/step - loss: 0.7807 - acc: 0.8457 - val_loss: 0.6999 - val_acc: 0.8754
Epoch 31/500
113s 225ms/step - loss: 0.7795 - acc: 0.8487 - val_loss: 0.7116 - val_acc: 0.8745
Epoch 32/500
113s 225ms/step - loss: 0.7722 - acc: 0.8497 - val_loss: 0.7064 - val_acc: 0.8798
Epoch 33/500
113s 226ms/step - loss: 0.7678 - acc: 0.8533 - val_loss: 0.7148 - val_acc: 0.8709
Epoch 34/500
113s 226ms/step - loss: 0.7634 - acc: 0.8528 - val_loss: 0.7095 - val_acc: 0.8741
Epoch 35/500
113s 225ms/step - loss: 0.7684 - acc: 0.8535 - val_loss: 0.7070 - val_acc: 0.8768
Epoch 36/500
113s 225ms/step - loss: 0.7630 - acc: 0.8540 - val_loss: 0.6935 - val_acc: 0.8804
Epoch 37/500
113s 225ms/step - loss: 0.7557 - acc: 0.8566 - val_loss: 0.6997 - val_acc: 0.8785
Epoch 38/500
113s 225ms/step - loss: 0.7518 - acc: 0.8591 - val_loss: 0.7090 - val_acc: 0.8771
Epoch 39/500
113s 225ms/step - loss: 0.7537 - acc: 0.8581 - val_loss: 0.6784 - val_acc: 0.8879
Epoch 40/500
113s 226ms/step - loss: 0.7537 - acc: 0.8566 - val_loss: 0.6778 - val_acc: 0.8854
Epoch 41/500
113s 226ms/step - loss: 0.7461 - acc: 0.8613 - val_loss: 0.6941 - val_acc: 0.8800
Epoch 42/500
113s 226ms/step - loss: 0.7518 - acc: 0.8586 - val_loss: 0.7230 - val_acc: 0.8731
Epoch 43/500
113s 225ms/step - loss: 0.7562 - acc: 0.8561 - val_loss: 0.6876 - val_acc: 0.8859
Epoch 44/500
113s 225ms/step - loss: 0.7398 - acc: 0.8626 - val_loss: 0.6793 - val_acc: 0.8861
Epoch 45/500
113s 225ms/step - loss: 0.7402 - acc: 0.8638 - val_loss: 0.6860 - val_acc: 0.8857
Epoch 46/500
113s 225ms/step - loss: 0.7430 - acc: 0.8626 - val_loss: 0.6878 - val_acc: 0.8857
Epoch 47/500
113s 225ms/step - loss: 0.7372 - acc: 0.8656 - val_loss: 0.6758 - val_acc: 0.8885
Epoch 48/500
113s 225ms/step - loss: 0.7364 - acc: 0.8649 - val_loss: 0.6837 - val_acc: 0.8849
Epoch 49/500
113s 226ms/step - loss: 0.7374 - acc: 0.8639 - val_loss: 0.6730 - val_acc: 0.8902
Epoch 50/500
113s 226ms/step - loss: 0.7389 - acc: 0.8657 - val_loss: 0.6848 - val_acc: 0.8868
Epoch 51/500
113s 227ms/step - loss: 0.7354 - acc: 0.8654 - val_loss: 0.6788 - val_acc: 0.8892
Epoch 52/500
113s 227ms/step - loss: 0.7286 - acc: 0.8691 - val_loss: 0.6942 - val_acc: 0.8800
Epoch 53/500
113s 225ms/step - loss: 0.7365 - acc: 0.8653 - val_loss: 0.6929 - val_acc: 0.8820
Epoch 54/500
113s 226ms/step - loss: 0.7295 - acc: 0.8685 - val_loss: 0.6761 - val_acc: 0.8892
Epoch 55/500
113s 226ms/step - loss: 0.7319 - acc: 0.8694 - val_loss: 0.6715 - val_acc: 0.8886
Epoch 56/500
113s 226ms/step - loss: 0.7315 - acc: 0.8681 - val_loss: 0.6807 - val_acc: 0.8891
Epoch 57/500
113s 226ms/step - loss: 0.7330 - acc: 0.8679 - val_loss: 0.6705 - val_acc: 0.8943
Epoch 58/500
113s 226ms/step - loss: 0.7269 - acc: 0.8715 - val_loss: 0.7076 - val_acc: 0.8776
Epoch 59/500
113s 226ms/step - loss: 0.7314 - acc: 0.8690 - val_loss: 0.6747 - val_acc: 0.8884
Epoch 60/500
113s 226ms/step - loss: 0.7323 - acc: 0.8699 - val_loss: 0.6775 - val_acc: 0.8867
Epoch 61/500
113s 225ms/step - loss: 0.7289 - acc: 0.8698 - val_loss: 0.6851 - val_acc: 0.8838
Epoch 62/500
112s 225ms/step - loss: 0.7290 - acc: 0.8688 - val_loss: 0.6995 - val_acc: 0.8838
Epoch 63/500
112s 225ms/step - loss: 0.7302 - acc: 0.8696 - val_loss: 0.6758 - val_acc: 0.8913
Epoch 64/500
113s 225ms/step - loss: 0.7264 - acc: 0.8714 - val_loss: 0.6770 - val_acc: 0.8907
Epoch 65/500
113s 225ms/step - loss: 0.7238 - acc: 0.8725 - val_loss: 0.6898 - val_acc: 0.8865
Epoch 66/500
113s 225ms/step - loss: 0.7218 - acc: 0.8728 - val_loss: 0.6712 - val_acc: 0.8936
Epoch 67/500
113s 225ms/step - loss: 0.7235 - acc: 0.8729 - val_loss: 0.6829 - val_acc: 0.8888
Epoch 68/500
112s 225ms/step - loss: 0.7226 - acc: 0.8740 - val_loss: 0.6635 - val_acc: 0.8967
Epoch 69/500
112s 225ms/step - loss: 0.7281 - acc: 0.8713 - val_loss: 0.6750 - val_acc: 0.8912
Epoch 70/500
112s 225ms/step - loss: 0.7218 - acc: 0.8735 - val_loss: 0.6937 - val_acc: 0.8855
Epoch 71/500
113s 225ms/step - loss: 0.7207 - acc: 0.8738 - val_loss: 0.7040 - val_acc: 0.8796
Epoch 72/500
113s 225ms/step - loss: 0.7215 - acc: 0.8748 - val_loss: 0.6944 - val_acc: 0.8890
Epoch 73/500
113s 225ms/step - loss: 0.7206 - acc: 0.8742 - val_loss: 0.6757 - val_acc: 0.8903
Epoch 74/500
113s 225ms/step - loss: 0.7172 - acc: 0.8750 - val_loss: 0.6872 - val_acc: 0.8889
Epoch 75/500
113s 225ms/step - loss: 0.7183 - acc: 0.8758 - val_loss: 0.6691 - val_acc: 0.8950
Epoch 76/500
112s 225ms/step - loss: 0.7188 - acc: 0.8749 - val_loss: 0.6823 - val_acc: 0.8872
Epoch 77/500
112s 225ms/step - loss: 0.7165 - acc: 0.8753 - val_loss: 0.6794 - val_acc: 0.8913
Epoch 78/500
113s 225ms/step - loss: 0.7159 - acc: 0.8760 - val_loss: 0.7313 - val_acc: 0.8730
Epoch 79/500
112s 225ms/step - loss: 0.7146 - acc: 0.8772 - val_loss: 0.7072 - val_acc: 0.8798
Epoch 80/500
113s 225ms/step - loss: 0.7196 - acc: 0.8754 - val_loss: 0.6698 - val_acc: 0.8951
Epoch 81/500
113s 225ms/step - loss: 0.7112 - acc: 0.8789 - val_loss: 0.6696 - val_acc: 0.8939
Epoch 82/500
113s 225ms/step - loss: 0.7180 - acc: 0.8757 - val_loss: 0.6697 - val_acc: 0.8944
Epoch 83/500
113s 225ms/step - loss: 0.7126 - acc: 0.8770 - val_loss: 0.6615 - val_acc: 0.8972
Epoch 84/500
112s 225ms/step - loss: 0.7112 - acc: 0.8799 - val_loss: 0.6893 - val_acc: 0.8848
Epoch 85/500
112s 225ms/step - loss: 0.7149 - acc: 0.8766 - val_loss: 0.6679 - val_acc: 0.8963
Epoch 86/500
112s 225ms/step - loss: 0.7109 - acc: 0.8769 - val_loss: 0.6713 - val_acc: 0.8953
Epoch 87/500
112s 225ms/step - loss: 0.7088 - acc: 0.8803 - val_loss: 0.6571 - val_acc: 0.8985
Epoch 88/500
112s 225ms/step - loss: 0.7119 - acc: 0.8789 - val_loss: 0.6786 - val_acc: 0.8919
Epoch 89/500
113s 225ms/step - loss: 0.7111 - acc: 0.8767 - val_loss: 0.6741 - val_acc: 0.8925
Epoch 90/500
113s 225ms/step - loss: 0.7096 - acc: 0.8788 - val_loss: 0.7048 - val_acc: 0.8829
Epoch 91/500
113s 225ms/step - loss: 0.7056 - acc: 0.8787 - val_loss: 0.6714 - val_acc: 0.8933
Epoch 92/500
113s 225ms/step - loss: 0.7121 - acc: 0.8786 - val_loss: 0.6962 - val_acc: 0.8857
Epoch 93/500
112s 225ms/step - loss: 0.7078 - acc: 0.8805 - val_loss: 0.6854 - val_acc: 0.8882
Epoch 94/500
112s 225ms/step - loss: 0.7026 - acc: 0.8830 - val_loss: 0.6821 - val_acc: 0.8894
Epoch 95/500
112s 225ms/step - loss: 0.7063 - acc: 0.8812 - val_loss: 0.6900 - val_acc: 0.8866
Epoch 96/500
113s 225ms/step - loss: 0.7091 - acc: 0.8803 - val_loss: 0.6765 - val_acc: 0.8961
Epoch 97/500
113s 225ms/step - loss: 0.7036 - acc: 0.8810 - val_loss: 0.6744 - val_acc: 0.8946
Epoch 98/500
113s 225ms/step - loss: 0.7081 - acc: 0.8794 - val_loss: 0.6673 - val_acc: 0.8952
Epoch 99/500
113s 225ms/step - loss: 0.7091 - acc: 0.8799 - val_loss: 0.6713 - val_acc: 0.8931
Epoch 100/500
112s 225ms/step - loss: 0.7066 - acc: 0.8814 - val_loss: 0.6701 - val_acc: 0.8938
Epoch 101/500
112s 225ms/step - loss: 0.7114 - acc: 0.8797 - val_loss: 0.6702 - val_acc: 0.8961
Epoch 102/500
112s 225ms/step - loss: 0.7028 - acc: 0.8816 - val_loss: 0.6682 - val_acc: 0.8965
Epoch 103/500
115s 229ms/step - loss: 0.7026 - acc: 0.8826 - val_loss: 0.6839 - val_acc: 0.8905
Epoch 104/500
116s 232ms/step - loss: 0.7047 - acc: 0.8810 - val_loss: 0.6711 - val_acc: 0.8953
Epoch 105/500
113s 227ms/step - loss: 0.7039 - acc: 0.8814 - val_loss: 0.6785 - val_acc: 0.8928
Epoch 106/500
113s 227ms/step - loss: 0.7064 - acc: 0.8824 - val_loss: 0.6767 - val_acc: 0.8928
Epoch 107/500
114s 227ms/step - loss: 0.7069 - acc: 0.8804 - val_loss: 0.6523 - val_acc: 0.9039
Epoch 108/500
113s 226ms/step - loss: 0.7051 - acc: 0.8813 - val_loss: 0.6804 - val_acc: 0.8919
Epoch 109/500
113s 227ms/step - loss: 0.6994 - acc: 0.8833 - val_loss: 0.6735 - val_acc: 0.8955
Epoch 110/500
113s 226ms/step - loss: 0.7034 - acc: 0.8829 - val_loss: 0.6633 - val_acc: 0.8982
Epoch 111/500
113s 226ms/step - loss: 0.7008 - acc: 0.8839 - val_loss: 0.6726 - val_acc: 0.8911
Epoch 112/500
113s 226ms/step - loss: 0.7010 - acc: 0.8828 - val_loss: 0.6609 - val_acc: 0.8981
Epoch 113/500
113s 226ms/step - loss: 0.7055 - acc: 0.8811 - val_loss: 0.6971 - val_acc: 0.8839
Epoch 114/500
113s 226ms/step - loss: 0.7023 - acc: 0.8834 - val_loss: 0.6695 - val_acc: 0.8949
Epoch 115/500
113s 227ms/step - loss: 0.7028 - acc: 0.8832 - val_loss: 0.6720 - val_acc: 0.8975
Epoch 116/500
113s 226ms/step - loss: 0.7005 - acc: 0.8843 - val_loss: 0.6934 - val_acc: 0.8880
Epoch 117/500
113s 226ms/step - loss: 0.7030 - acc: 0.8842 - val_loss: 0.6827 - val_acc: 0.8932
Epoch 118/500
113s 226ms/step - loss: 0.7016 - acc: 0.8861 - val_loss: 0.6817 - val_acc: 0.8936
Epoch 119/500
112s 225ms/step - loss: 0.7037 - acc: 0.8841 - val_loss: 0.6781 - val_acc: 0.8958
Epoch 120/500
113s 226ms/step - loss: 0.7014 - acc: 0.8837 - val_loss: 0.6793 - val_acc: 0.8936
Epoch 121/500
113s 227ms/step - loss: 0.7016 - acc: 0.8829 - val_loss: 0.6608 - val_acc: 0.9021
Epoch 122/500
113s 227ms/step - loss: 0.6984 - acc: 0.8848 - val_loss: 0.6910 - val_acc: 0.8891
Epoch 123/500
113s 227ms/step - loss: 0.6991 - acc: 0.8846 - val_loss: 0.6739 - val_acc: 0.8955
Epoch 124/500
113s 226ms/step - loss: 0.6990 - acc: 0.8846 - val_loss: 0.6570 - val_acc: 0.9016
Epoch 125/500
113s 226ms/step - loss: 0.6992 - acc: 0.8846 - val_loss: 0.6822 - val_acc: 0.8909
Epoch 126/500
113s 226ms/step - loss: 0.7034 - acc: 0.8824 - val_loss: 0.6745 - val_acc: 0.8981
Epoch 127/500
114s 227ms/step - loss: 0.6946 - acc: 0.8866 - val_loss: 0.6683 - val_acc: 0.8949
Epoch 128/500
113s 227ms/step - loss: 0.6965 - acc: 0.8850 - val_loss: 0.6737 - val_acc: 0.8963
Epoch 129/500
113s 227ms/step - loss: 0.7051 - acc: 0.8827 - val_loss: 0.6649 - val_acc: 0.8981
Epoch 130/500
113s 227ms/step - loss: 0.6976 - acc: 0.8846 - val_loss: 0.6652 - val_acc: 0.8990
Epoch 131/500
113s 227ms/step - loss: 0.7012 - acc: 0.8841 - val_loss: 0.6639 - val_acc: 0.8959
Epoch 132/500
113s 226ms/step - loss: 0.6958 - acc: 0.8850 - val_loss: 0.6691 - val_acc: 0.8946
Epoch 133/500
113s 226ms/step - loss: 0.6963 - acc: 0.8849 - val_loss: 0.6856 - val_acc: 0.8914
Epoch 134/500
113s 225ms/step - loss: 0.6970 - acc: 0.8862 - val_loss: 0.6668 - val_acc: 0.8966
Epoch 135/500
112s 225ms/step - loss: 0.7032 - acc: 0.8821 - val_loss: 0.6686 - val_acc: 0.8974
Epoch 136/500
113s 226ms/step - loss: 0.6983 - acc: 0.8875 - val_loss: 0.6755 - val_acc: 0.8957
Epoch 137/500
113s 225ms/step - loss: 0.6947 - acc: 0.8871 - val_loss: 0.6649 - val_acc: 0.8966
Epoch 138/500
113s 226ms/step - loss: 0.6941 - acc: 0.8877 - val_loss: 0.6825 - val_acc: 0.8892
Epoch 139/500
113s 225ms/step - loss: 0.6954 - acc: 0.8870 - val_loss: 0.6597 - val_acc: 0.9013
Epoch 140/500
113s 225ms/step - loss: 0.6950 - acc: 0.8855 - val_loss: 0.6797 - val_acc: 0.8891
Epoch 141/500
113s 225ms/step - loss: 0.6965 - acc: 0.8854 - val_loss: 0.6886 - val_acc: 0.8924
Epoch 142/500
113s 225ms/step - loss: 0.6912 - acc: 0.8879 - val_loss: 0.6643 - val_acc: 0.8985
Epoch 143/500
113s 225ms/step - loss: 0.6955 - acc: 0.8869 - val_loss: 0.6971 - val_acc: 0.8889
Epoch 144/500
112s 225ms/step - loss: 0.6932 - acc: 0.8870 - val_loss: 0.6666 - val_acc: 0.8969
Epoch 145/500
113s 225ms/step - loss: 0.6914 - acc: 0.8875 - val_loss: 0.6700 - val_acc: 0.8981
Epoch 146/500
113s 225ms/step - loss: 0.6989 - acc: 0.8856 - val_loss: 0.6825 - val_acc: 0.8936
Epoch 147/500
113s 225ms/step - loss: 0.6970 - acc: 0.8861 - val_loss: 0.6667 - val_acc: 0.8995
Epoch 148/500
113s 225ms/step - loss: 0.6911 - acc: 0.8880 - val_loss: 0.6808 - val_acc: 0.8912
Epoch 149/500
112s 225ms/step - loss: 0.6987 - acc: 0.8853 - val_loss: 0.6893 - val_acc: 0.8885
Epoch 150/500
112s 225ms/step - loss: 0.6952 - acc: 0.8868 - val_loss: 0.6745 - val_acc: 0.8932
Epoch 151/500
lr changed to 0.010000000149011612
113s 225ms/step - loss: 0.5880 - acc: 0.9249 - val_loss: 0.5801 - val_acc: 0.9269
Epoch 152/500
113s 225ms/step - loss: 0.5264 - acc: 0.9440 - val_loss: 0.5680 - val_acc: 0.9276
Epoch 153/500
113s 225ms/step - loss: 0.5067 - acc: 0.9467 - val_loss: 0.5533 - val_acc: 0.9320
Epoch 154/500
113s 225ms/step - loss: 0.4909 - acc: 0.9512 - val_loss: 0.5453 - val_acc: 0.9325
Epoch 155/500
112s 225ms/step - loss: 0.4762 - acc: 0.9550 - val_loss: 0.5348 - val_acc: 0.9330
Epoch 156/500
112s 225ms/step - loss: 0.4647 - acc: 0.9559 - val_loss: 0.5253 - val_acc: 0.9360
Epoch 157/500
112s 225ms/step - loss: 0.4550 - acc: 0.9583 - val_loss: 0.5218 - val_acc: 0.9354
Epoch 158/500
113s 225ms/step - loss: 0.4475 - acc: 0.9579 - val_loss: 0.5165 - val_acc: 0.9351
Epoch 159/500
112s 225ms/step - loss: 0.4348 - acc: 0.9615 - val_loss: 0.5185 - val_acc: 0.9346
Epoch 160/500
112s 225ms/step - loss: 0.4245 - acc: 0.9629 - val_loss: 0.5120 - val_acc: 0.9342
Epoch 161/500
113s 225ms/step - loss: 0.4177 - acc: 0.9638 - val_loss: 0.5018 - val_acc: 0.9365
Epoch 162/500
113s 225ms/step - loss: 0.4123 - acc: 0.9638 - val_loss: 0.5089 - val_acc: 0.9323
Epoch 163/500
113s 225ms/step - loss: 0.4046 - acc: 0.9647 - val_loss: 0.4858 - val_acc: 0.9379
Epoch 164/500
112s 225ms/step - loss: 0.3988 - acc: 0.9654 - val_loss: 0.4954 - val_acc: 0.9334
Epoch 165/500
112s 225ms/step - loss: 0.3880 - acc: 0.9677 - val_loss: 0.4836 - val_acc: 0.9362
Epoch 166/500
112s 225ms/step - loss: 0.3873 - acc: 0.9656 - val_loss: 0.4829 - val_acc: 0.9364
Epoch 167/500
112s 225ms/step - loss: 0.3819 - acc: 0.9661 - val_loss: 0.4774 - val_acc: 0.9362
Epoch 168/500
113s 225ms/step - loss: 0.3697 - acc: 0.9691 - val_loss: 0.4738 - val_acc: 0.9353
Epoch 169/500
113s 225ms/step - loss: 0.3664 - acc: 0.9688 - val_loss: 0.4863 - val_acc: 0.9318
Epoch 170/500
113s 225ms/step - loss: 0.3630 - acc: 0.9687 - val_loss: 0.4720 - val_acc: 0.9349
Epoch 171/500
113s 225ms/step - loss: 0.3587 - acc: 0.9687 - val_loss: 0.4613 - val_acc: 0.9355
Epoch 172/500
112s 225ms/step - loss: 0.3558 - acc: 0.9680 - val_loss: 0.4569 - val_acc: 0.9381
Epoch 173/500
112s 225ms/step - loss: 0.3453 - acc: 0.9714 - val_loss: 0.4611 - val_acc: 0.9359
Epoch 174/500
112s 225ms/step - loss: 0.3427 - acc: 0.9712 - val_loss: 0.4663 - val_acc: 0.9335
Epoch 175/500
112s 225ms/step - loss: 0.3369 - acc: 0.9709 - val_loss: 0.4493 - val_acc: 0.9386
Epoch 176/500
112s 225ms/step - loss: 0.3342 - acc: 0.9709 - val_loss: 0.4462 - val_acc: 0.9390
Epoch 177/500
113s 225ms/step - loss: 0.3293 - acc: 0.9721 - val_loss: 0.4442 - val_acc: 0.9368
Epoch 178/500
113s 225ms/step - loss: 0.3271 - acc: 0.9712 - val_loss: 0.4484 - val_acc: 0.9373
Epoch 179/500
113s 225ms/step - loss: 0.3217 - acc: 0.9730 - val_loss: 0.4435 - val_acc: 0.9335
Epoch 180/500
112s 225ms/step - loss: 0.3189 - acc: 0.9730 - val_loss: 0.4352 - val_acc: 0.9372
Epoch 181/500
112s 225ms/step - loss: 0.3133 - acc: 0.9748 - val_loss: 0.4449 - val_acc: 0.9313
Epoch 182/500
112s 225ms/step - loss: 0.3109 - acc: 0.9737 - val_loss: 0.4395 - val_acc: 0.9365
Epoch 183/500
112s 225ms/step - loss: 0.3092 - acc: 0.9720 - val_loss: 0.4329 - val_acc: 0.9374
Epoch 184/500
113s 225ms/step - loss: 0.3045 - acc: 0.9743 - val_loss: 0.4374 - val_acc: 0.9362
Epoch 185/500
113s 225ms/step - loss: 0.3005 - acc: 0.9741 - val_loss: 0.4256 - val_acc: 0.9371
Epoch 186/500
113s 225ms/step - loss: 0.3022 - acc: 0.9728 - val_loss: 0.4335 - val_acc: 0.9344
Epoch 187/500
112s 225ms/step - loss: 0.2969 - acc: 0.9737 - val_loss: 0.4246 - val_acc: 0.9343
Epoch 188/500
113s 225ms/step - loss: 0.2931 - acc: 0.9751 - val_loss: 0.4229 - val_acc: 0.9339
Epoch 189/500
112s 225ms/step - loss: 0.2929 - acc: 0.9734 - val_loss: 0.4216 - val_acc: 0.9362
Epoch 190/500
112s 225ms/step - loss: 0.2892 - acc: 0.9743 - val_loss: 0.4263 - val_acc: 0.9358
Epoch 191/500
112s 225ms/step - loss: 0.2869 - acc: 0.9744 - val_loss: 0.4181 - val_acc: 0.9342
Epoch 192/500
113s 225ms/step - loss: 0.2867 - acc: 0.9743 - val_loss: 0.4099 - val_acc: 0.9367
Epoch 193/500
113s 225ms/step - loss: 0.2848 - acc: 0.9739 - val_loss: 0.4184 - val_acc: 0.9378
Epoch 194/500
113s 226ms/step - loss: 0.2820 - acc: 0.9744 - val_loss: 0.4223 - val_acc: 0.9360
Epoch 195/500
113s 225ms/step - loss: 0.2827 - acc: 0.9726 - val_loss: 0.4049 - val_acc: 0.9375
Epoch 196/500
113s 225ms/step - loss: 0.2778 - acc: 0.9743 - val_loss: 0.4126 - val_acc: 0.9321
Epoch 197/500
113s 225ms/step - loss: 0.2761 - acc: 0.9738 - val_loss: 0.4225 - val_acc: 0.9305
Epoch 198/500
113s 225ms/step - loss: 0.2750 - acc: 0.9743 - val_loss: 0.4122 - val_acc: 0.9330
Epoch 199/500
113s 226ms/step - loss: 0.2713 - acc: 0.9751 - val_loss: 0.4222 - val_acc: 0.9323
Epoch 200/500
113s 226ms/step - loss: 0.2710 - acc: 0.9742 - val_loss: 0.4112 - val_acc: 0.9348
Epoch 201/500
113s 227ms/step - loss: 0.2696 - acc: 0.9743 - val_loss: 0.4100 - val_acc: 0.9359
Epoch 202/500
113s 227ms/step - loss: 0.2694 - acc: 0.9729 - val_loss: 0.4060 - val_acc: 0.9333
Epoch 203/500
113s 226ms/step - loss: 0.2662 - acc: 0.9741 - val_loss: 0.4018 - val_acc: 0.9387
Epoch 204/500
113s 226ms/step - loss: 0.2695 - acc: 0.9731 - val_loss: 0.3977 - val_acc: 0.9361
Epoch 205/500
113s 226ms/step - loss: 0.2605 - acc: 0.9757 - val_loss: 0.3963 - val_acc: 0.9366
Epoch 206/500
113s 226ms/step - loss: 0.2609 - acc: 0.9750 - val_loss: 0.3835 - val_acc: 0.9405
Epoch 207/500
113s 226ms/step - loss: 0.2599 - acc: 0.9744 - val_loss: 0.3933 - val_acc: 0.9370
Epoch 208/500
113s 226ms/step - loss: 0.2628 - acc: 0.9737 - val_loss: 0.4033 - val_acc: 0.9340
Epoch 209/500
113s 226ms/step - loss: 0.2612 - acc: 0.9731 - val_loss: 0.3999 - val_acc: 0.9342
Epoch 210/500
113s 226ms/step - loss: 0.2619 - acc: 0.9736 - val_loss: 0.3882 - val_acc: 0.9348
Epoch 211/500
113s 226ms/step - loss: 0.2550 - acc: 0.9753 - val_loss: 0.3986 - val_acc: 0.9367
Epoch 212/500
113s 226ms/step - loss: 0.2590 - acc: 0.9730 - val_loss: 0.3952 - val_acc: 0.9347
Epoch 213/500
113s 226ms/step - loss: 0.2566 - acc: 0.9742 - val_loss: 0.3871 - val_acc: 0.9378
Epoch 214/500
113s 226ms/step - loss: 0.2521 - acc: 0.9751 - val_loss: 0.3802 - val_acc: 0.9393
Epoch 215/500
113s 226ms/step - loss: 0.2532 - acc: 0.9745 - val_loss: 0.3808 - val_acc: 0.9370
Epoch 216/500
113s 227ms/step - loss: 0.2480 - acc: 0.9764 - val_loss: 0.3828 - val_acc: 0.9356
Epoch 217/500
113s 226ms/step - loss: 0.2516 - acc: 0.9742 - val_loss: 0.3902 - val_acc: 0.9355
Epoch 218/500
113s 227ms/step - loss: 0.2479 - acc: 0.9761 - val_loss: 0.3846 - val_acc: 0.9358
Epoch 219/500
113s 226ms/step - loss: 0.2514 - acc: 0.9745 - val_loss: 0.3882 - val_acc: 0.9344
Epoch 220/500
113s 227ms/step - loss: 0.2563 - acc: 0.9715 - val_loss: 0.3814 - val_acc: 0.9362
Epoch 221/500
113s 226ms/step - loss: 0.2500 - acc: 0.9738 - val_loss: 0.3930 - val_acc: 0.9326
Epoch 222/500
113s 226ms/step - loss: 0.2479 - acc: 0.9739 - val_loss: 0.3908 - val_acc: 0.9330
Epoch 223/500
113s 226ms/step - loss: 0.2487 - acc: 0.9733 - val_loss: 0.3893 - val_acc: 0.9334
Epoch 224/500
113s 226ms/step - loss: 0.2468 - acc: 0.9741 - val_loss: 0.3931 - val_acc: 0.9317
Epoch 225/500
113s 227ms/step - loss: 0.2467 - acc: 0.9743 - val_loss: 0.3810 - val_acc: 0.9346
Epoch 226/500
113s 227ms/step - loss: 0.2484 - acc: 0.9735 - val_loss: 0.3867 - val_acc: 0.9356
Epoch 227/500
113s 226ms/step - loss: 0.2420 - acc: 0.9752 - val_loss: 0.3772 - val_acc: 0.9341
Epoch 228/500
112s 225ms/step - loss: 0.2455 - acc: 0.9740 - val_loss: 0.3844 - val_acc: 0.9348
Epoch 229/500
112s 224ms/step - loss: 0.2452 - acc: 0.9729 - val_loss: 0.3765 - val_acc: 0.9355
Epoch 230/500
112s 224ms/step - loss: 0.2447 - acc: 0.9742 - val_loss: 0.3883 - val_acc: 0.9315
Epoch 231/500
112s 224ms/step - loss: 0.2451 - acc: 0.9743 - val_loss: 0.3814 - val_acc: 0.9350
Epoch 232/500
113s 226ms/step - loss: 0.2422 - acc: 0.9745 - val_loss: 0.3960 - val_acc: 0.9344
Epoch 233/500
113s 226ms/step - loss: 0.2392 - acc: 0.9759 - val_loss: 0.3841 - val_acc: 0.9340
Epoch 234/500
113s 226ms/step - loss: 0.2401 - acc: 0.9751 - val_loss: 0.3749 - val_acc: 0.9378
Epoch 235/500
113s 226ms/step - loss: 0.2428 - acc: 0.9733 - val_loss: 0.3801 - val_acc: 0.9339
Epoch 236/500
113s 226ms/step - loss: 0.2423 - acc: 0.9728 - val_loss: 0.3838 - val_acc: 0.9317
Epoch 237/500
113s 226ms/step - loss: 0.2447 - acc: 0.9739 - val_loss: 0.3912 - val_acc: 0.9336
Epoch 238/500
113s 226ms/step - loss: 0.2415 - acc: 0.9734 - val_loss: 0.3828 - val_acc: 0.9316
Epoch 239/500
113s 225ms/step - loss: 0.2422 - acc: 0.9736 - val_loss: 0.3828 - val_acc: 0.9348
Epoch 240/500
113s 225ms/step - loss: 0.2409 - acc: 0.9735 - val_loss: 0.3760 - val_acc: 0.9357
Epoch 241/500
113s 225ms/step - loss: 0.2414 - acc: 0.9738 - val_loss: 0.3782 - val_acc: 0.9333
Epoch 242/500
113s 225ms/step - loss: 0.2379 - acc: 0.9747 - val_loss: 0.3821 - val_acc: 0.9334
Epoch 243/500
113s 225ms/step - loss: 0.2370 - acc: 0.9746 - val_loss: 0.3912 - val_acc: 0.9333
Epoch 244/500
113s 225ms/step - loss: 0.2399 - acc: 0.9730 - val_loss: 0.3748 - val_acc: 0.9351
Epoch 245/500
112s 225ms/step - loss: 0.2402 - acc: 0.9729 - val_loss: 0.3815 - val_acc: 0.9326
Epoch 246/500
112s 225ms/step - loss: 0.2405 - acc: 0.9732 - val_loss: 0.3700 - val_acc: 0.9370
Epoch 247/500
113s 225ms/step - loss: 0.2383 - acc: 0.9743 - val_loss: 0.3789 - val_acc: 0.9350
Epoch 248/500
113s 226ms/step - loss: 0.2354 - acc: 0.9752 - val_loss: 0.3728 - val_acc: 0.9353
Epoch 249/500
113s 226ms/step - loss: 0.2341 - acc: 0.9751 - val_loss: 0.3940 - val_acc: 0.9303
Epoch 250/500
113s 226ms/step - loss: 0.2365 - acc: 0.9742 - val_loss: 0.3741 - val_acc: 0.9354
Epoch 251/500
113s 226ms/step - loss: 0.2384 - acc: 0.9741 - val_loss: 0.3947 - val_acc: 0.9274
Epoch 252/500
113s 226ms/step - loss: 0.2348 - acc: 0.9744 - val_loss: 0.3767 - val_acc: 0.9321
Epoch 253/500
113s 226ms/step - loss: 0.2389 - acc: 0.9733 - val_loss: 0.3813 - val_acc: 0.9313
Epoch 254/500
113s 226ms/step - loss: 0.2364 - acc: 0.9744 - val_loss: 0.3834 - val_acc: 0.9344
Epoch 255/500
113s 226ms/step - loss: 0.2392 - acc: 0.9737 - val_loss: 0.3870 - val_acc: 0.9295
Epoch 256/500
113s 226ms/step - loss: 0.2359 - acc: 0.9737 - val_loss: 0.3754 - val_acc: 0.9334
Epoch 257/500
113s 227ms/step - loss: 0.2395 - acc: 0.9726 - val_loss: 0.3790 - val_acc: 0.9330
Epoch 258/500
113s 226ms/step - loss: 0.2328 - acc: 0.9752 - val_loss: 0.3878 - val_acc: 0.9319
Epoch 259/500
113s 225ms/step - loss: 0.2371 - acc: 0.9728 - val_loss: 0.3820 - val_acc: 0.9336
Epoch 260/500
112s 225ms/step - loss: 0.2331 - acc: 0.9749 - val_loss: 0.3849 - val_acc: 0.9307
Epoch 261/500
113s 225ms/step - loss: 0.2357 - acc: 0.9736 - val_loss: 0.3882 - val_acc: 0.9310
Epoch 262/500
113s 225ms/step - loss: 0.2369 - acc: 0.9735 - val_loss: 0.3761 - val_acc: 0.9344
Epoch 263/500
113s 225ms/step - loss: 0.2344 - acc: 0.9741 - val_loss: 0.3788 - val_acc: 0.9324
Epoch 264/500
113s 225ms/step - loss: 0.2360 - acc: 0.9730 - val_loss: 0.3844 - val_acc: 0.9285
Epoch 265/500
113s 225ms/step - loss: 0.2370 - acc: 0.9737 - val_loss: 0.3862 - val_acc: 0.9309
Epoch 266/500
113s 226ms/step - loss: 0.2353 - acc: 0.9735 - val_loss: 0.3754 - val_acc: 0.9333
Epoch 267/500
113s 225ms/step - loss: 0.2355 - acc: 0.9737 - val_loss: 0.3944 - val_acc: 0.9294
Epoch 268/500
113s 225ms/step - loss: 0.2296 - acc: 0.9758 - val_loss: 0.3946 - val_acc: 0.9307
Epoch 269/500
112s 225ms/step - loss: 0.2355 - acc: 0.9732 - val_loss: 0.3855 - val_acc: 0.9322
Epoch 270/500
112s 225ms/step - loss: 0.2351 - acc: 0.9742 - val_loss: 0.3753 - val_acc: 0.9336
Epoch 271/500
113s 225ms/step - loss: 0.2336 - acc: 0.9745 - val_loss: 0.3856 - val_acc: 0.9281
Epoch 272/500
113s 225ms/step - loss: 0.2359 - acc: 0.9736 - val_loss: 0.3606 - val_acc: 0.9368
Epoch 273/500
113s 225ms/step - loss: 0.2301 - acc: 0.9751 - val_loss: 0.3759 - val_acc: 0.9334
Epoch 274/500
113s 225ms/step - loss: 0.2307 - acc: 0.9751 - val_loss: 0.3776 - val_acc: 0.9322
Epoch 275/500
113s 225ms/step - loss: 0.2349 - acc: 0.9742 - val_loss: 0.3715 - val_acc: 0.9376
Epoch 276/500
113s 225ms/step - loss: 0.2393 - acc: 0.9719 - val_loss: 0.3619 - val_acc: 0.9383
Epoch 277/500
113s 225ms/step - loss: 0.2299 - acc: 0.9750 - val_loss: 0.3697 - val_acc: 0.9340
Epoch 278/500
112s 225ms/step - loss: 0.2314 - acc: 0.9743 - val_loss: 0.3743 - val_acc: 0.9303
Epoch 279/500
112s 225ms/step - loss: 0.2325 - acc: 0.9735 - val_loss: 0.3725 - val_acc: 0.9317
Epoch 280/500
112s 225ms/step - loss: 0.2337 - acc: 0.9738 - val_loss: 0.3929 - val_acc: 0.9284
Epoch 281/500
113s 225ms/step - loss: 0.2311 - acc: 0.9751 - val_loss: 0.3826 - val_acc: 0.9303
Epoch 282/500
113s 225ms/step - loss: 0.2316 - acc: 0.9753 - val_loss: 0.3922 - val_acc: 0.9295
Epoch 283/500
113s 225ms/step - loss: 0.2321 - acc: 0.9741 - val_loss: 0.3757 - val_acc: 0.9313
Epoch 284/500
112s 225ms/step - loss: 0.2323 - acc: 0.9744 - val_loss: 0.3874 - val_acc: 0.9296
Epoch 285/500
112s 225ms/step - loss: 0.2318 - acc: 0.9752 - val_loss: 0.4014 - val_acc: 0.9278
Epoch 286/500
112s 225ms/step - loss: 0.2314 - acc: 0.9744 - val_loss: 0.3838 - val_acc: 0.9332
Epoch 287/500
112s 225ms/step - loss: 0.2324 - acc: 0.9741 - val_loss: 0.3912 - val_acc: 0.9284
Epoch 288/500
112s 225ms/step - loss: 0.2325 - acc: 0.9735 - val_loss: 0.3842 - val_acc: 0.9317
Epoch 289/500
113s 225ms/step - loss: 0.2285 - acc: 0.9760 - val_loss: 0.3814 - val_acc: 0.9328
Epoch 290/500
113s 225ms/step - loss: 0.2286 - acc: 0.9759 - val_loss: 0.3796 - val_acc: 0.9326
Epoch 291/500
112s 225ms/step - loss: 0.2306 - acc: 0.9752 - val_loss: 0.3871 - val_acc: 0.9281
Epoch 292/500
112s 225ms/step - loss: 0.2304 - acc: 0.9742 - val_loss: 0.3822 - val_acc: 0.9302
Epoch 293/500
112s 225ms/step - loss: 0.2300 - acc: 0.9742 - val_loss: 0.3958 - val_acc: 0.9304
Epoch 294/500
112s 225ms/step - loss: 0.2308 - acc: 0.9740 - val_loss: 0.3838 - val_acc: 0.9301
Epoch 295/500
113s 225ms/step - loss: 0.2336 - acc: 0.9721 - val_loss: 0.3784 - val_acc: 0.9347
Epoch 296/500
113s 225ms/step - loss: 0.2316 - acc: 0.9743 - val_loss: 0.3737 - val_acc: 0.9308
Epoch 297/500
113s 225ms/step - loss: 0.2273 - acc: 0.9759 - val_loss: 0.3791 - val_acc: 0.9345
Epoch 298/500
113s 225ms/step - loss: 0.2303 - acc: 0.9750 - val_loss: 0.3935 - val_acc: 0.9289
Epoch 299/500
112s 225ms/step - loss: 0.2291 - acc: 0.9750 - val_loss: 0.3793 - val_acc: 0.9300
Epoch 300/500
113s 225ms/step - loss: 0.2299 - acc: 0.9746 - val_loss: 0.3846 - val_acc: 0.9306
Epoch 301/500
lr changed to 0.0009999999776482583
112s 225ms/step - loss: 0.2081 - acc: 0.9831 - val_loss: 0.3536 - val_acc: 0.9390
Epoch 302/500
113s 226ms/step - loss: 0.1928 - acc: 0.9890 - val_loss: 0.3467 - val_acc: 0.9398
Epoch 303/500
113s 226ms/step - loss: 0.1888 - acc: 0.9899 - val_loss: 0.3437 - val_acc: 0.9412
Epoch 304/500
113s 226ms/step - loss: 0.1863 - acc: 0.9907 - val_loss: 0.3394 - val_acc: 0.9441
Epoch 305/500
113s 226ms/step - loss: 0.1840 - acc: 0.9912 - val_loss: 0.3429 - val_acc: 0.9433
Epoch 306/500
113s 227ms/step - loss: 0.1829 - acc: 0.9915 - val_loss: 0.3398 - val_acc: 0.9446
Epoch 307/500
113s 226ms/step - loss: 0.1798 - acc: 0.9928 - val_loss: 0.3412 - val_acc: 0.9450
Epoch 308/500
113s 226ms/step - loss: 0.1800 - acc: 0.9920 - val_loss: 0.3410 - val_acc: 0.9457
Epoch 309/500
113s 227ms/step - loss: 0.1785 - acc: 0.9929 - val_loss: 0.3397 - val_acc: 0.9451
Epoch 310/500
113s 226ms/step - loss: 0.1784 - acc: 0.9926 - val_loss: 0.3417 - val_acc: 0.9449
Epoch 311/500
113s 226ms/step - loss: 0.1759 - acc: 0.9935 - val_loss: 0.3421 - val_acc: 0.9452
Epoch 312/500
113s 226ms/step - loss: 0.1747 - acc: 0.9942 - val_loss: 0.3403 - val_acc: 0.9456
Epoch 313/500
113s 227ms/step - loss: 0.1750 - acc: 0.9936 - val_loss: 0.3413 - val_acc: 0.9442
Epoch 314/500
113s 227ms/step - loss: 0.1745 - acc: 0.9941 - val_loss: 0.3404 - val_acc: 0.9459
Epoch 315/500
113s 226ms/step - loss: 0.1714 - acc: 0.9948 - val_loss: 0.3407 - val_acc: 0.9466
Epoch 316/500
113s 227ms/step - loss: 0.1709 - acc: 0.9949 - val_loss: 0.3393 - val_acc: 0.9478
Epoch 317/500
113s 226ms/step - loss: 0.1714 - acc: 0.9944 - val_loss: 0.3402 - val_acc: 0.9464
Epoch 318/500
113s 227ms/step - loss: 0.1709 - acc: 0.9946 - val_loss: 0.3412 - val_acc: 0.9453
Epoch 319/500
113s 227ms/step - loss: 0.1700 - acc: 0.9949 - val_loss: 0.3433 - val_acc: 0.9454
Epoch 320/500
113s 227ms/step - loss: 0.1697 - acc: 0.9948 - val_loss: 0.3413 - val_acc: 0.9452
Epoch 321/500
113s 226ms/step - loss: 0.1689 - acc: 0.9948 - val_loss: 0.3382 - val_acc: 0.9460
Epoch 322/500
113s 226ms/step - loss: 0.1680 - acc: 0.9951 - val_loss: 0.3406 - val_acc: 0.9461
Epoch 323/500
113s 226ms/step - loss: 0.1674 - acc: 0.9953 - val_loss: 0.3395 - val_acc: 0.9467
Epoch 324/500
113s 225ms/step - loss: 0.1683 - acc: 0.9947 - val_loss: 0.3424 - val_acc: 0.9473
Epoch 325/500
112s 225ms/step - loss: 0.1659 - acc: 0.9957 - val_loss: 0.3431 - val_acc: 0.9458
Epoch 326/500
113s 225ms/step - loss: 0.1666 - acc: 0.9951 - val_loss: 0.3427 - val_acc: 0.9461
Epoch 327/500
113s 225ms/step - loss: 0.1655 - acc: 0.9955 - val_loss: 0.3434 - val_acc: 0.9454
Epoch 328/500
113s 225ms/step - loss: 0.1666 - acc: 0.9948 - val_loss: 0.3415 - val_acc: 0.9466
Epoch 329/500
113s 226ms/step - loss: 0.1660 - acc: 0.9955 - val_loss: 0.3420 - val_acc: 0.9461
Epoch 330/500
113s 225ms/step - loss: 0.1655 - acc: 0.9954 - val_loss: 0.3414 - val_acc: 0.9461
Epoch 331/500
113s 225ms/step - loss: 0.1654 - acc: 0.9951 - val_loss: 0.3424 - val_acc: 0.9461
Epoch 332/500
113s 225ms/step - loss: 0.1638 - acc: 0.9959 - val_loss: 0.3433 - val_acc: 0.9455
Epoch 333/500
112s 225ms/step - loss: 0.1635 - acc: 0.9958 - val_loss: 0.3471 - val_acc: 0.9449
Epoch 334/500
113s 225ms/step - loss: 0.1641 - acc: 0.9955 - val_loss: 0.3459 - val_acc: 0.9453
Epoch 335/500
112s 225ms/step - loss: 0.1625 - acc: 0.9960 - val_loss: 0.3452 - val_acc: 0.9448
Epoch 336/500
113s 225ms/step - loss: 0.1623 - acc: 0.9957 - val_loss: 0.3459 - val_acc: 0.9452
Epoch 337/500
113s 226ms/step - loss: 0.1623 - acc: 0.9958 - val_loss: 0.3450 - val_acc: 0.9455
Epoch 338/500
113s 225ms/step - loss: 0.1608 - acc: 0.9962 - val_loss: 0.3457 - val_acc: 0.9459
Epoch 339/500
113s 225ms/step - loss: 0.1609 - acc: 0.9959 - val_loss: 0.3453 - val_acc: 0.9461
Epoch 340/500
112s 225ms/step - loss: 0.1609 - acc: 0.9958 - val_loss: 0.3462 - val_acc: 0.9444
Epoch 341/500
113s 225ms/step - loss: 0.1601 - acc: 0.9961 - val_loss: 0.3452 - val_acc: 0.9470
Epoch 342/500
113s 225ms/step - loss: 0.1603 - acc: 0.9959 - val_loss: 0.3451 - val_acc: 0.9459
Epoch 343/500
113s 225ms/step - loss: 0.1602 - acc: 0.9961 - val_loss: 0.3421 - val_acc: 0.9462
Epoch 344/500
113s 225ms/step - loss: 0.1607 - acc: 0.9959 - val_loss: 0.3442 - val_acc: 0.9456
Epoch 345/500
113s 226ms/step - loss: 0.1589 - acc: 0.9964 - val_loss: 0.3431 - val_acc: 0.9461
Epoch 346/500
113s 226ms/step - loss: 0.1588 - acc: 0.9962 - val_loss: 0.3445 - val_acc: 0.9461
Epoch 347/500
113s 225ms/step - loss: 0.1585 - acc: 0.9960 - val_loss: 0.3415 - val_acc: 0.9452
Epoch 348/500
113s 225ms/step - loss: 0.1569 - acc: 0.9967 - val_loss: 0.3407 - val_acc: 0.9459
Epoch 349/500
112s 225ms/step - loss: 0.1574 - acc: 0.9966 - val_loss: 0.3378 - val_acc: 0.9473
Epoch 350/500
113s 226ms/step - loss: 0.1580 - acc: 0.9960 - val_loss: 0.3403 - val_acc: 0.9466
Epoch 351/500
113s 226ms/step - loss: 0.1577 - acc: 0.9961 - val_loss: 0.3405 - val_acc: 0.9461
Epoch 352/500
113s 226ms/step - loss: 0.1560 - acc: 0.9968 - val_loss: 0.3381 - val_acc: 0.9478
Epoch 353/500
113s 226ms/step - loss: 0.1569 - acc: 0.9962 - val_loss: 0.3405 - val_acc: 0.9467
Epoch 354/500
113s 226ms/step - loss: 0.1564 - acc: 0.9964 - val_loss: 0.3428 - val_acc: 0.9446
Epoch 355/500
113s 226ms/step - loss: 0.1557 - acc: 0.9967 - val_loss: 0.3414 - val_acc: 0.9453
Epoch 356/500
113s 226ms/step - loss: 0.1552 - acc: 0.9965 - val_loss: 0.3409 - val_acc: 0.9451
Epoch 357/500
113s 226ms/step - loss: 0.1557 - acc: 0.9964 - val_loss: 0.3384 - val_acc: 0.9463
Epoch 358/500
113s 226ms/step - loss: 0.1553 - acc: 0.9965 - val_loss: 0.3404 - val_acc: 0.9476
Epoch 359/500
113s 226ms/step - loss: 0.1545 - acc: 0.9962 - val_loss: 0.3439 - val_acc: 0.9462
Epoch 360/500
113s 226ms/step - loss: 0.1552 - acc: 0.9963 - val_loss: 0.3407 - val_acc: 0.9468
Epoch 361/500
113s 227ms/step - loss: 0.1544 - acc: 0.9966 - val_loss: 0.3405 - val_acc: 0.9462
Epoch 362/500
113s 226ms/step - loss: 0.1538 - acc: 0.9968 - val_loss: 0.3421 - val_acc: 0.9458
Epoch 363/500
113s 227ms/step - loss: 0.1537 - acc: 0.9964 - val_loss: 0.3379 - val_acc: 0.9475
Epoch 364/500
113s 226ms/step - loss: 0.1534 - acc: 0.9964 - val_loss: 0.3379 - val_acc: 0.9464
Epoch 365/500
113s 226ms/step - loss: 0.1518 - acc: 0.9970 - val_loss: 0.3386 - val_acc: 0.9465
Epoch 366/500
113s 226ms/step - loss: 0.1524 - acc: 0.9968 - val_loss: 0.3393 - val_acc: 0.9477
Epoch 367/500
113s 226ms/step - loss: 0.1517 - acc: 0.9969 - val_loss: 0.3394 - val_acc: 0.9469
Epoch 368/500
113s 226ms/step - loss: 0.1513 - acc: 0.9969 - val_loss: 0.3384 - val_acc: 0.9478
Epoch 369/500
113s 227ms/step - loss: 0.1525 - acc: 0.9961 - val_loss: 0.3363 - val_acc: 0.9481
Epoch 370/500
113s 227ms/step - loss: 0.1518 - acc: 0.9962 - val_loss: 0.3387 - val_acc: 0.9476
Epoch 371/500
113s 226ms/step - loss: 0.1508 - acc: 0.9967 - val_loss: 0.3377 - val_acc: 0.9464
Epoch 372/500
113s 226ms/step - loss: 0.1504 - acc: 0.9968 - val_loss: 0.3354 - val_acc: 0.9480
Epoch 373/500
113s 226ms/step - loss: 0.1501 - acc: 0.9970 - val_loss: 0.3368 - val_acc: 0.9482
Epoch 374/500
113s 226ms/step - loss: 0.1507 - acc: 0.9962 - val_loss: 0.3427 - val_acc: 0.9460
Epoch 375/500
113s 226ms/step - loss: 0.1501 - acc: 0.9966 - val_loss: 0.3393 - val_acc: 0.9467
Epoch 376/500
113s 226ms/step - loss: 0.1502 - acc: 0.9968 - val_loss: 0.3370 - val_acc: 0.9473
Epoch 377/500
113s 226ms/step - loss: 0.1502 - acc: 0.9963 - val_loss: 0.3394 - val_acc: 0.9483
Epoch 378/500
113s 227ms/step - loss: 0.1493 - acc: 0.9968 - val_loss: 0.3388 - val_acc: 0.9462
Epoch 379/500
113s 226ms/step - loss: 0.1488 - acc: 0.9967 - val_loss: 0.3359 - val_acc: 0.9469
Epoch 380/500
113s 226ms/step - loss: 0.1480 - acc: 0.9971 - val_loss: 0.3339 - val_acc: 0.9491
Epoch 381/500
113s 226ms/step - loss: 0.1490 - acc: 0.9969 - val_loss: 0.3339 - val_acc: 0.9491
Epoch 382/500
113s 226ms/step - loss: 0.1480 - acc: 0.9967 - val_loss: 0.3327 - val_acc: 0.9488
Epoch 383/500
113s 226ms/step - loss: 0.1471 - acc: 0.9970 - val_loss: 0.3320 - val_acc: 0.9482
Epoch 384/500
113s 226ms/step - loss: 0.1464 - acc: 0.9972 - val_loss: 0.3324 - val_acc: 0.9473
Epoch 385/500
113s 226ms/step - loss: 0.1476 - acc: 0.9967 - val_loss: 0.3372 - val_acc: 0.9466
Epoch 386/500
113s 226ms/step - loss: 0.1474 - acc: 0.9966 - val_loss: 0.3369 - val_acc: 0.9467
Epoch 387/500
113s 227ms/step - loss: 0.1478 - acc: 0.9964 - val_loss: 0.3360 - val_acc: 0.9486
Epoch 388/500
113s 227ms/step - loss: 0.1474 - acc: 0.9967 - val_loss: 0.3312 - val_acc: 0.9481
Epoch 389/500
113s 226ms/step - loss: 0.1460 - acc: 0.9969 - val_loss: 0.3304 - val_acc: 0.9486
Epoch 390/500
113s 226ms/step - loss: 0.1448 - acc: 0.9974 - val_loss: 0.3322 - val_acc: 0.9502
Epoch 391/500
113s 226ms/step - loss: 0.1456 - acc: 0.9971 - val_loss: 0.3331 - val_acc: 0.9494
Epoch 392/500
113s 227ms/step - loss: 0.1455 - acc: 0.9970 - val_loss: 0.3367 - val_acc: 0.9477
Epoch 393/500
113s 227ms/step - loss: 0.1452 - acc: 0.9968 - val_loss: 0.3359 - val_acc: 0.9479
Epoch 394/500
113s 226ms/step - loss: 0.1446 - acc: 0.9971 - val_loss: 0.3331 - val_acc: 0.9484
Epoch 395/500
113s 226ms/step - loss: 0.1455 - acc: 0.9965 - val_loss: 0.3309 - val_acc: 0.9512
Epoch 396/500
113s 227ms/step - loss: 0.1451 - acc: 0.9966 - val_loss: 0.3285 - val_acc: 0.9498
Epoch 397/500
113s 226ms/step - loss: 0.1439 - acc: 0.9970 - val_loss: 0.3292 - val_acc: 0.9496
Epoch 398/500
113s 226ms/step - loss: 0.1436 - acc: 0.9971 - val_loss: 0.3320 - val_acc: 0.9488
Epoch 399/500
113s 226ms/step - loss: 0.1436 - acc: 0.9969 - val_loss: 0.3312 - val_acc: 0.9491
Epoch 400/500
113s 226ms/step - loss: 0.1447 - acc: 0.9967 - val_loss: 0.3280 - val_acc: 0.9486
Epoch 401/500
113s 225ms/step - loss: 0.1435 - acc: 0.9969 - val_loss: 0.3281 - val_acc: 0.9489
Epoch 402/500
113s 225ms/step - loss: 0.1421 - acc: 0.9973 - val_loss: 0.3280 - val_acc: 0.9483
Epoch 403/500
113s 226ms/step - loss: 0.1426 - acc: 0.9970 - val_loss: 0.3281 - val_acc: 0.9478
Epoch 404/500
113s 227ms/step - loss: 0.1427 - acc: 0.9969 - val_loss: 0.3269 - val_acc: 0.9484
Epoch 405/500
113s 226ms/step - loss: 0.1425 - acc: 0.9969 - val_loss: 0.3267 - val_acc: 0.9495
Epoch 406/500
113s 226ms/step - loss: 0.1417 - acc: 0.9971 - val_loss: 0.3263 - val_acc: 0.9483
Epoch 407/500
113s 226ms/step - loss: 0.1422 - acc: 0.9971 - val_loss: 0.3268 - val_acc: 0.9496
Epoch 408/500
113s 226ms/step - loss: 0.1413 - acc: 0.9971 - val_loss: 0.3270 - val_acc: 0.9487
Epoch 409/500
113s 226ms/step - loss: 0.1417 - acc: 0.9970 - val_loss: 0.3246 - val_acc: 0.9499
Epoch 410/500
113s 226ms/step - loss: 0.1412 - acc: 0.9969 - val_loss: 0.3243 - val_acc: 0.9488
Epoch 411/500
113s 226ms/step - loss: 0.1405 - acc: 0.9973 - val_loss: 0.3263 - val_acc: 0.9503
Epoch 412/500
113s 226ms/step - loss: 0.1406 - acc: 0.9971 - val_loss: 0.3222 - val_acc: 0.9497
Epoch 413/500
113s 226ms/step - loss: 0.1412 - acc: 0.9968 - val_loss: 0.3249 - val_acc: 0.9497
Epoch 414/500
113s 226ms/step - loss: 0.1401 - acc: 0.9971 - val_loss: 0.3257 - val_acc: 0.9487
Epoch 415/500
113s 226ms/step - loss: 0.1394 - acc: 0.9973 - val_loss: 0.3263 - val_acc: 0.9492
Epoch 416/500
113s 226ms/step - loss: 0.1394 - acc: 0.9973 - val_loss: 0.3279 - val_acc: 0.9470
Epoch 417/500
113s 227ms/step - loss: 0.1393 - acc: 0.9973 - val_loss: 0.3298 - val_acc: 0.9473
Epoch 418/500
113s 227ms/step - loss: 0.1387 - acc: 0.9973 - val_loss: 0.3277 - val_acc: 0.9478
Epoch 419/500
113s 227ms/step - loss: 0.1383 - acc: 0.9970 - val_loss: 0.3247 - val_acc: 0.9482
Epoch 420/500
113s 226ms/step - loss: 0.1390 - acc: 0.9971 - val_loss: 0.3288 - val_acc: 0.9465
Epoch 421/500
113s 226ms/step - loss: 0.1374 - acc: 0.9976 - val_loss: 0.3266 - val_acc: 0.9480
Epoch 422/500
113s 226ms/step - loss: 0.1385 - acc: 0.9972 - val_loss: 0.3261 - val_acc: 0.9489
Epoch 423/500
113s 226ms/step - loss: 0.1382 - acc: 0.9971 - val_loss: 0.3274 - val_acc: 0.9479
Epoch 424/500
113s 226ms/step - loss: 0.1377 - acc: 0.9973 - val_loss: 0.3287 - val_acc: 0.9478
Epoch 425/500
113s 226ms/step - loss: 0.1374 - acc: 0.9973 - val_loss: 0.3291 - val_acc: 0.9484
Epoch 426/500
113s 226ms/step - loss: 0.1367 - acc: 0.9977 - val_loss: 0.3282 - val_acc: 0.9483
Epoch 427/500
113s 226ms/step - loss: 0.1365 - acc: 0.9974 - val_loss: 0.3260 - val_acc: 0.9497
Epoch 428/500
113s 226ms/step - loss: 0.1366 - acc: 0.9973 - val_loss: 0.3257 - val_acc: 0.9498
Epoch 429/500
113s 225ms/step - loss: 0.1353 - acc: 0.9978 - val_loss: 0.3262 - val_acc: 0.9489
Epoch 430/500
112s 225ms/step - loss: 0.1365 - acc: 0.9972 - val_loss: 0.3315 - val_acc: 0.9463
Epoch 431/500
113s 225ms/step - loss: 0.1364 - acc: 0.9976 - val_loss: 0.3292 - val_acc: 0.9476
Epoch 432/500
113s 225ms/step - loss: 0.1356 - acc: 0.9973 - val_loss: 0.3270 - val_acc: 0.9489
Epoch 433/500
113s 225ms/step - loss: 0.1348 - acc: 0.9976 - val_loss: 0.3246 - val_acc: 0.9495
Epoch 434/500
113s 225ms/step - loss: 0.1350 - acc: 0.9975 - val_loss: 0.3265 - val_acc: 0.9479
Epoch 435/500
113s 225ms/step - loss: 0.1360 - acc: 0.9969 - val_loss: 0.3319 - val_acc: 0.9479
Epoch 436/500
113s 225ms/step - loss: 0.1344 - acc: 0.9975 - val_loss: 0.3297 - val_acc: 0.9472
Epoch 437/500
112s 225ms/step - loss: 0.1351 - acc: 0.9969 - val_loss: 0.3296 - val_acc: 0.9484
Epoch 438/500
112s 225ms/step - loss: 0.1349 - acc: 0.9972 - val_loss: 0.3268 - val_acc: 0.9483
Epoch 439/500
113s 225ms/step - loss: 0.1337 - acc: 0.9974 - val_loss: 0.3236 - val_acc: 0.9485
Epoch 440/500
113s 226ms/step - loss: 0.1335 - acc: 0.9978 - val_loss: 0.3239 - val_acc: 0.9473
Epoch 441/500
113s 226ms/step - loss: 0.1337 - acc: 0.9975 - val_loss: 0.3215 - val_acc: 0.9489
Epoch 442/500
113s 226ms/step - loss: 0.1327 - acc: 0.9976 - val_loss: 0.3201 - val_acc: 0.9497
Epoch 443/500
113s 226ms/step - loss: 0.1338 - acc: 0.9973 - val_loss: 0.3210 - val_acc: 0.9501
Epoch 444/500
113s 227ms/step - loss: 0.1335 - acc: 0.9975 - val_loss: 0.3232 - val_acc: 0.9487
Epoch 445/500
113s 226ms/step - loss: 0.1325 - acc: 0.9974 - val_loss: 0.3232 - val_acc: 0.9487
Epoch 446/500
113s 226ms/step - loss: 0.1344 - acc: 0.9968 - val_loss: 0.3225 - val_acc: 0.9485
Epoch 447/500
113s 226ms/step - loss: 0.1317 - acc: 0.9978 - val_loss: 0.3251 - val_acc: 0.9471
Epoch 448/500
113s 226ms/step - loss: 0.1331 - acc: 0.9969 - val_loss: 0.3241 - val_acc: 0.9493
Epoch 449/500
113s 226ms/step - loss: 0.1322 - acc: 0.9974 - val_loss: 0.3257 - val_acc: 0.9484
Epoch 450/500
113s 226ms/step - loss: 0.1313 - acc: 0.9978 - val_loss: 0.3216 - val_acc: 0.9492
Epoch 451/500
lr changed to 9.999999310821295e-05
113s 226ms/step - loss: 0.1308 - acc: 0.9979 - val_loss: 0.3216 - val_acc: 0.9498
Epoch 452/500
113s 226ms/step - loss: 0.1318 - acc: 0.9971 - val_loss: 0.3211 - val_acc: 0.9492
Epoch 453/500
112s 225ms/step - loss: 0.1308 - acc: 0.9976 - val_loss: 0.3210 - val_acc: 0.9497
Epoch 454/500
113s 225ms/step - loss: 0.1297 - acc: 0.9981 - val_loss: 0.3207 - val_acc: 0.9494
Epoch 455/500
113s 225ms/step - loss: 0.1309 - acc: 0.9978 - val_loss: 0.3204 - val_acc: 0.9493
Epoch 456/500
113s 226ms/step - loss: 0.1312 - acc: 0.9978 - val_loss: 0.3202 - val_acc: 0.9494
Epoch 457/500
113s 225ms/step - loss: 0.1300 - acc: 0.9979 - val_loss: 0.3200 - val_acc: 0.9496
Epoch 458/500
113s 226ms/step - loss: 0.1307 - acc: 0.9979 - val_loss: 0.3196 - val_acc: 0.9497
Epoch 459/500
113s 226ms/step - loss: 0.1303 - acc: 0.9978 - val_loss: 0.3195 - val_acc: 0.9505
Epoch 460/500
112s 225ms/step - loss: 0.1305 - acc: 0.9976 - val_loss: 0.3195 - val_acc: 0.9499
Epoch 461/500
113s 225ms/step - loss: 0.1301 - acc: 0.9979 - val_loss: 0.3194 - val_acc: 0.9501
Epoch 462/500
112s 225ms/step - loss: 0.1303 - acc: 0.9978 - val_loss: 0.3187 - val_acc: 0.9498
Epoch 463/500
113s 226ms/step - loss: 0.1306 - acc: 0.9977 - val_loss: 0.3191 - val_acc: 0.9503
Epoch 464/500
113s 225ms/step - loss: 0.1299 - acc: 0.9978 - val_loss: 0.3188 - val_acc: 0.9506
Epoch 465/500
113s 225ms/step - loss: 0.1302 - acc: 0.9978 - val_loss: 0.3189 - val_acc: 0.9501
Epoch 466/500
113s 227ms/step - loss: 0.1300 - acc: 0.9980 - val_loss: 0.3187 - val_acc: 0.9499
Epoch 467/500
113s 226ms/step - loss: 0.1302 - acc: 0.9980 - val_loss: 0.3187 - val_acc: 0.9502
Epoch 468/500
113s 225ms/step - loss: 0.1299 - acc: 0.9979 - val_loss: 0.3184 - val_acc: 0.9501
Epoch 469/500
113s 225ms/step - loss: 0.1291 - acc: 0.9982 - val_loss: 0.3185 - val_acc: 0.9503
Epoch 470/500
113s 225ms/step - loss: 0.1298 - acc: 0.9980 - val_loss: 0.3182 - val_acc: 0.9501
Epoch 471/500
113s 225ms/step - loss: 0.1297 - acc: 0.9979 - val_loss: 0.3181 - val_acc: 0.9503
Epoch 472/500
113s 225ms/step - loss: 0.1300 - acc: 0.9979 - val_loss: 0.3184 - val_acc: 0.9503
Epoch 473/500
113s 225ms/step - loss: 0.1299 - acc: 0.9980 - val_loss: 0.3184 - val_acc: 0.9505
Epoch 474/500
113s 225ms/step - loss: 0.1306 - acc: 0.9976 - val_loss: 0.3180 - val_acc: 0.9506
Epoch 475/500
112s 225ms/step - loss: 0.1302 - acc: 0.9978 - val_loss: 0.3178 - val_acc: 0.9504
Epoch 476/500
113s 225ms/step - loss: 0.1297 - acc: 0.9977 - val_loss: 0.3177 - val_acc: 0.9503
Epoch 477/500
113s 225ms/step - loss: 0.1295 - acc: 0.9980 - val_loss: 0.3173 - val_acc: 0.9501
Epoch 478/500
112s 225ms/step - loss: 0.1297 - acc: 0.9981 - val_loss: 0.3172 - val_acc: 0.9501
Epoch 479/500
112s 225ms/step - loss: 0.1299 - acc: 0.9978 - val_loss: 0.3171 - val_acc: 0.9508
Epoch 480/500
113s 225ms/step - loss: 0.1291 - acc: 0.9980 - val_loss: 0.3174 - val_acc: 0.9506
Epoch 481/500
113s 225ms/step - loss: 0.1297 - acc: 0.9981 - val_loss: 0.3177 - val_acc: 0.9499
Epoch 482/500
113s 226ms/step - loss: 0.1295 - acc: 0.9980 - val_loss: 0.3178 - val_acc: 0.9506
Epoch 483/500
113s 225ms/step - loss: 0.1298 - acc: 0.9977 - val_loss: 0.3176 - val_acc: 0.9508
Epoch 484/500
113s 225ms/step - loss: 0.1295 - acc: 0.9977 - val_loss: 0.3181 - val_acc: 0.9503
Epoch 485/500
113s 225ms/step - loss: 0.1286 - acc: 0.9984 - val_loss: 0.3184 - val_acc: 0.9502
Epoch 486/500
112s 225ms/step - loss: 0.1290 - acc: 0.9981 - val_loss: 0.3175 - val_acc: 0.9508
Epoch 487/500
112s 225ms/step - loss: 0.1292 - acc: 0.9980 - val_loss: 0.3177 - val_acc: 0.9505
Epoch 488/500
113s 225ms/step - loss: 0.1292 - acc: 0.9982 - val_loss: 0.3175 - val_acc: 0.9503
Epoch 489/500
113s 226ms/step - loss: 0.1300 - acc: 0.9978 - val_loss: 0.3176 - val_acc: 0.9503
Epoch 490/500
113s 225ms/step - loss: 0.1293 - acc: 0.9979 - val_loss: 0.3176 - val_acc: 0.9505
Epoch 491/500
113s 225ms/step - loss: 0.1289 - acc: 0.9981 - val_loss: 0.3177 - val_acc: 0.9501
Epoch 492/500
113s 225ms/step - loss: 0.1293 - acc: 0.9982 - val_loss: 0.3174 - val_acc: 0.9504
Epoch 493/500
112s 225ms/step - loss: 0.1285 - acc: 0.9983 - val_loss: 0.3178 - val_acc: 0.9503
Epoch 494/500
112s 225ms/step - loss: 0.1297 - acc: 0.9979 - val_loss: 0.3178 - val_acc: 0.9501
Epoch 495/500
113s 225ms/step - loss: 0.1290 - acc: 0.9979 - val_loss: 0.3174 - val_acc: 0.9505
Epoch 496/500
113s 225ms/step - loss: 0.1292 - acc: 0.9979 - val_loss: 0.3171 - val_acc: 0.9508
Epoch 497/500
113s 225ms/step - loss: 0.1291 - acc: 0.9982 - val_loss: 0.3176 - val_acc: 0.9506
Epoch 498/500
113s 226ms/step - loss: 0.1285 - acc: 0.9982 - val_loss: 0.3180 - val_acc: 0.9505
Epoch 499/500
113s 225ms/step - loss: 0.1298 - acc: 0.9978 - val_loss: 0.3183 - val_acc: 0.9500
Epoch 500/500
113s 225ms/step - loss: 0.1290 - acc: 0.9981 - val_loss: 0.3182 - val_acc: 0.9512
Train loss: 0.1252169744670391
Train accuracy: 0.9990800008773804
Test loss: 0.31817472279071807
Test accuracy: 0.9512000060081482

準確率到了95.12%,看來增加深度還是管用的。相較於調參記錄20的94.17%高了接近1%。

如果深度再翻倍會怎麼樣呢?

Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht, Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458

https://ieeexplore.ieee.org/document/8998530

作者的哈工大主頁:

————————————————

版權宣告:本文為CSDN博主「dangqing1988」的原創文章,遵循CC 4.0 BY-SA版權協議,轉載請附上原文出處連結及本宣告。

原文連結:https://blog.csdn.net/dangqing1988/article/details/106157819

來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69972329/viewspace-2692613/,如需轉載,請註明出處,否則將追究法律責任。

相關文章