深度殘差網路+自適應引數化ReLU啟用函式(調參記錄7)
續上一篇:
深度殘差網路+自適應引數化ReLU啟用函式(調參記錄6)
https://blog.csdn.net/dangqing1988/article/details/105628681
本文冒著過擬合的風險,將卷積核的個數增加成32個、64個和128個,繼續測試Adaptively Parametric ReLU(APReLU)啟用函式在Cifar10影像集上的效果。APReLU啟用函式的基本原理如下圖所示:
Keras程式碼如下:
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 14 04:17:45 2020 Implemented using TensorFlow 1.10.0 and Keras 2.2.1 Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht, Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458 @author: Minghang Zhao """ from __future__ import print_function import keras import numpy as np from keras.datasets import cifar10 from keras.layers import Dense, Conv2D, BatchNormalization, Activation, Minimum from keras.layers import AveragePooling2D, Input, GlobalAveragePooling2D, Concatenate, Reshape from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras import optimizers from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import LearningRateScheduler K.set_learning_phase(1) # The data, split between train and test sets (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Noised data x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_test = x_test-np.mean(x_train) x_train = x_train-np.mean(x_train) print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) # Schedule the learning rate, multiply 0.1 every 300 epoches def scheduler(epoch): if epoch % 300 == 0 and epoch != 0: lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, lr * 0.1) print("lr changed to {}".format(lr * 0.1)) return K.get_value(model.optimizer.lr) # An adaptively parametric rectifier linear unit (APReLU) def aprelu(inputs): # get the number of channels channels = inputs.get_shape().as_list()[-1] # get a zero feature map zeros_input = keras.layers.subtract([inputs, inputs]) # get a feature map with only positive features pos_input = Activation('relu')(inputs) # get a feature map with only negative features neg_input = Minimum()([inputs,zeros_input]) # define a network to obtain the scaling coefficients scales_p = GlobalAveragePooling2D()(pos_input) scales_n = GlobalAveragePooling2D()(neg_input) scales = Concatenate()([scales_n, scales_p]) scales = Dense(channels, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales) scales = BatchNormalization()(scales) scales = Activation('relu')(scales) scales = Dense(channels, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales) scales = BatchNormalization()(scales) scales = Activation('sigmoid')(scales) scales = Reshape((1,1,channels))(scales) # apply a paramtetric relu neg_part = keras.layers.multiply([scales, neg_input]) return keras.layers.add([pos_input, neg_part]) # Residual Block def residual_block(incoming, nb_blocks, out_channels, downsample=False, downsample_strides=2): residual = incoming in_channels = incoming.get_shape().as_list()[-1] for i in range(nb_blocks): identity = residual if not downsample: downsample_strides = 1 residual = BatchNormalization()(residual) residual = aprelu(residual) residual = Conv2D(out_channels, 3, strides=(downsample_strides, downsample_strides), padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) residual = BatchNormalization()(residual) residual = aprelu(residual) residual = Conv2D(out_channels, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) # Downsampling if downsample_strides > 1: identity = AveragePooling2D(pool_size=(1,1), strides=(2,2))(identity) # Zero_padding to match channels if in_channels != out_channels: zeros_identity = keras.layers.subtract([identity, identity]) identity = keras.layers.concatenate([identity, zeros_identity]) in_channels = out_channels residual = keras.layers.add([residual, identity]) return residual # define and train a model inputs = Input(shape=(32, 32, 3)) net = Conv2D(32, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(inputs) net = residual_block(net, 9, 32, downsample=False) net = residual_block(net, 1, 64, downsample=True) net = residual_block(net, 8, 64, downsample=False) net = residual_block(net, 1, 128, downsample=True) net = residual_block(net, 8, 128, downsample=False) net = BatchNormalization()(net) net = Activation('relu')(net) net = GlobalAveragePooling2D()(net) outputs = Dense(10, activation='softmax', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(net) model = Model(inputs=inputs, outputs=outputs) sgd = optimizers.SGD(lr=0.1, decay=0., momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) # data augmentation datagen = ImageDataGenerator( # randomly rotate images in the range (deg 0 to 180) rotation_range=30, # randomly flip images horizontal_flip=True, # randomly shift images horizontally width_shift_range=0.125, # randomly shift images vertically height_shift_range=0.125) reduce_lr = LearningRateScheduler(scheduler) # fit the model on the batches generated by datagen.flow(). model.fit_generator(datagen.flow(x_train, y_train, batch_size=100), validation_data=(x_test, y_test), epochs=1000, verbose=1, callbacks=[reduce_lr], workers=4) # get results K.set_learning_phase(0) DRSN_train_score = model.evaluate(x_train, y_train, batch_size=100, verbose=0) print('Train loss:', DRSN_train_score[0]) print('Train accuracy:', DRSN_train_score[1]) DRSN_test_score = model.evaluate(x_test, y_test, batch_size=100, verbose=0) print('Test loss:', DRSN_test_score[0]) print('Test accuracy:', DRSN_test_score[1])
先複製一次spyder視窗裡的實驗結果:
Epoch 270/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5576 - acc: 0.9245 - val_loss: 0.6619 - val_acc: 0.8960 Epoch 271/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5605 - acc: 0.9250 - val_loss: 0.6675 - val_acc: 0.8908 Epoch 272/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5578 - acc: 0.9244 - val_loss: 0.6578 - val_acc: 0.8951 Epoch 273/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5625 - acc: 0.9232 - val_loss: 0.6663 - val_acc: 0.8907 Epoch 274/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5598 - acc: 0.9246 - val_loss: 0.6435 - val_acc: 0.9059 Epoch 275/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5567 - acc: 0.9265 - val_loss: 0.6589 - val_acc: 0.8949 Epoch 276/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5616 - acc: 0.9235 - val_loss: 0.6439 - val_acc: 0.9002 Epoch 277/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5568 - acc: 0.9258 - val_loss: 0.6731 - val_acc: 0.8913 ETA: 16s - loss: 0.5542 - acc: 0.9269 Epoch 278/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5582 - acc: 0.9254 - val_loss: 0.6437 - val_acc: 0.8995 Epoch 279/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5530 - acc: 0.9270 - val_loss: 0.6416 - val_acc: 0.9002 Epoch 280/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5603 - acc: 0.9245 - val_loss: 0.6566 - val_acc: 0.8960 Epoch 281/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5613 - acc: 0.9241 - val_loss: 0.6432 - val_acc: 0.9003 Epoch 282/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5568 - acc: 0.9250 - val_loss: 0.6573 - val_acc: 0.8950 Epoch 283/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5580 - acc: 0.9253 - val_loss: 0.6518 - val_acc: 0.8961 ETA: 10s - loss: 0.5551 - acc: 0.9260 Epoch 284/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5495 - acc: 0.9276 - val_loss: 0.6736 - val_acc: 0.8918 Epoch 285/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5611 - acc: 0.9238 - val_loss: 0.6538 - val_acc: 0.8962 Epoch 286/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5590 - acc: 0.9250 - val_loss: 0.6563 - val_acc: 0.8965 Epoch 287/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5581 - acc: 0.9245 - val_loss: 0.6482 - val_acc: 0.9035 Epoch 288/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5607 - acc: 0.9233 - val_loss: 0.6516 - val_acc: 0.8984 Epoch 289/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5608 - acc: 0.9252 - val_loss: 0.6562 - val_acc: 0.8984 Epoch 290/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5599 - acc: 0.9240 - val_loss: 0.6941 - val_acc: 0.8847 Epoch 291/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5600 - acc: 0.9244 - val_loss: 0.6695 - val_acc: 0.8902 Epoch 292/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5628 - acc: 0.9232 - val_loss: 0.6580 - val_acc: 0.8979 Epoch 293/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5602 - acc: 0.9242 - val_loss: 0.6726 - val_acc: 0.8913 Epoch 294/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5582 - acc: 0.9249 - val_loss: 0.6917 - val_acc: 0.8901 Epoch 295/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5559 - acc: 0.9265 - val_loss: 0.6805 - val_acc: 0.88967/500 [======================>.......] - ETA: 19s - loss: 0.5537 - acc: 0.9275 Epoch 296/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5570 - acc: 0.9265 - val_loss: 0.6315 - val_acc: 0.9039 Epoch 297/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5572 - acc: 0.9244 - val_loss: 0.6647 - val_acc: 0.8918 Epoch 298/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5555 - acc: 0.9259 - val_loss: 0.6540 - val_acc: 0.8960 Epoch 299/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5575 - acc: 0.9266 - val_loss: 0.6648 - val_acc: 0.8941 Epoch 300/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.5517 - acc: 0.9277 - val_loss: 0.6555 - val_acc: 0.8975 Epoch 301/1000 lr changed to 0.010000000149011612 500/500 [==============================] - 91s 182ms/step - loss: 0.4683 - acc: 0.9572 - val_loss: 0.5677 - val_acc: 0.9248 Epoch 302/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.4174 - acc: 0.9735 - val_loss: 0.5622 - val_acc: 0.9256 Epoch 303/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.3968 - acc: 0.9785 - val_loss: 0.5500 - val_acc: 0.9291 Epoch 304/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.3806 - acc: 0.9814 - val_loss: 0.5520 - val_acc: 0.9283 Epoch 305/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.3687 - acc: 0.9832 - val_loss: 0.5442 - val_acc: 0.9306 Epoch 306/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.3555 - acc: 0.9864 - val_loss: 0.5454 - val_acc: 0.9284 Epoch 307/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.3485 - acc: 0.9863 - val_loss: 0.5409 - val_acc: 0.9286 Epoch 308/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.3379 - acc: 0.9885 - val_loss: 0.5383 - val_acc: 0.9305 Epoch 309/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.3272 - acc: 0.9904 - val_loss: 0.5344 - val_acc: 0.9309 Epoch 310/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.3213 - acc: 0.9900 - val_loss: 0.5333 - val_acc: 0.9298 Epoch 311/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.3143 - acc: 0.9909 - val_loss: 0.5365 - val_acc: 0.9283 Epoch 312/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.3092 - acc: 0.9910 - val_loss: 0.5287 - val_acc: 0.9311 Epoch 313/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.3006 - acc: 0.9919 - val_loss: 0.5324 - val_acc: 0.9283 Epoch 314/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2945 - acc: 0.9916 - val_loss: 0.5286 - val_acc: 0.9300 Epoch 315/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2886 - acc: 0.9923 - val_loss: 0.5181 - val_acc: 0.9323 Epoch 316/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.2823 - acc: 0.9932 - val_loss: 0.5212 - val_acc: 0.9286 Epoch 317/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2778 - acc: 0.9930 - val_loss: 0.5182 - val_acc: 0.9296 Epoch 318/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.2720 - acc: 0.9936 - val_loss: 0.5122 - val_acc: 0.9287 Epoch 319/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.2662 - acc: 0.9940 - val_loss: 0.5083 - val_acc: 0.9277 Epoch 320/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.2597 - acc: 0.9944 - val_loss: 0.5018 - val_acc: 0.9315 Epoch 321/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.2560 - acc: 0.9944 - val_loss: 0.5086 - val_acc: 0.9296 Epoch 322/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2526 - acc: 0.9939 - val_loss: 0.5059 - val_acc: 0.9274 Epoch 323/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2466 - acc: 0.9945 - val_loss: 0.4991 - val_acc: 0.9302 Epoch 324/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2431 - acc: 0.9945 - val_loss: 0.5006 - val_acc: 0.9273 Epoch 325/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2384 - acc: 0.9947 - val_loss: 0.4914 - val_acc: 0.9296 Epoch 326/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.2334 - acc: 0.9948 - val_loss: 0.4938 - val_acc: 0.9291 Epoch 327/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.2301 - acc: 0.9949 - val_loss: 0.4869 - val_acc: 0.9303 Epoch 328/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2253 - acc: 0.9952 - val_loss: 0.4850 - val_acc: 0.9293 Epoch 329/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.2219 - acc: 0.9953 - val_loss: 0.4858 - val_acc: 0.9272 Epoch 330/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2170 - acc: 0.9959 - val_loss: 0.4834 - val_acc: 0.9277 Epoch 331/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2140 - acc: 0.9953 - val_loss: 0.4814 - val_acc: 0.9276 Epoch 332/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2118 - acc: 0.9951 - val_loss: 0.4767 - val_acc: 0.9273 Epoch 333/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2077 - acc: 0.9953 - val_loss: 0.4709 - val_acc: 0.9303 Epoch 334/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.2042 - acc: 0.9952 - val_loss: 0.4808 - val_acc: 0.9257 Epoch 335/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.2015 - acc: 0.9951 - val_loss: 0.4691 - val_acc: 0.9287 Epoch 336/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1988 - acc: 0.9952 - val_loss: 0.4659 - val_acc: 0.9273 Epoch 337/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1930 - acc: 0.9961 - val_loss: 0.4667 - val_acc: 0.9293 Epoch 338/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1901 - acc: 0.9961 - val_loss: 0.4559 - val_acc: 0.9299 Epoch 339/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1872 - acc: 0.9962 - val_loss: 0.4676 - val_acc: 0.9269 Epoch 340/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1890 - acc: 0.9940 - val_loss: 0.4556 - val_acc: 0.9291 Epoch 341/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1832 - acc: 0.9954 - val_loss: 0.4552 - val_acc: 0.9268 Epoch 342/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1798 - acc: 0.9954 - val_loss: 0.4556 - val_acc: 0.9294 Epoch 343/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1782 - acc: 0.9950 - val_loss: 0.4498 - val_acc: 0.9255 Epoch 344/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1775 - acc: 0.9943 - val_loss: 0.4522 - val_acc: 0.9263 Epoch 345/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1747 - acc: 0.9950 - val_loss: 0.4376 - val_acc: 0.9258 Epoch 346/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1702 - acc: 0.9955 - val_loss: 0.4464 - val_acc: 0.9263 Epoch 347/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1693 - acc: 0.9949 - val_loss: 0.4515 - val_acc: 0.9269 Epoch 348/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1654 - acc: 0.9951 - val_loss: 0.4452 - val_acc: 0.9249 Epoch 349/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1649 - acc: 0.9948 - val_loss: 0.4461 - val_acc: 0.9249 Epoch 350/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1632 - acc: 0.9944 - val_loss: 0.4301 - val_acc: 0.9291 Epoch 351/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1616 - acc: 0.9941 - val_loss: 0.4411 - val_acc: 0.9237 Epoch 352/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1594 - acc: 0.9948 - val_loss: 0.4301 - val_acc: 0.9308 Epoch 353/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1593 - acc: 0.9937 - val_loss: 0.4230 - val_acc: 0.9265 Epoch 354/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1565 - acc: 0.9942 - val_loss: 0.4243 - val_acc: 0.9272 Epoch 355/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1532 - acc: 0.9946 - val_loss: 0.4290 - val_acc: 0.9258 Epoch 356/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1525 - acc: 0.9945 - val_loss: 0.4171 - val_acc: 0.9294 Epoch 357/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1505 - acc: 0.9943 - val_loss: 0.4205 - val_acc: 0.9273 Epoch 358/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1481 - acc: 0.9945 - val_loss: 0.4295 - val_acc: 0.9227 Epoch 359/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1487 - acc: 0.9938 - val_loss: 0.4185 - val_acc: 0.9248 Epoch 360/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1452 - acc: 0.9946 - val_loss: 0.4244 - val_acc: 0.9256 Epoch 361/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1481 - acc: 0.9925 - val_loss: 0.4267 - val_acc: 0.9220 Epoch 362/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1468 - acc: 0.9929 - val_loss: 0.4009 - val_acc: 0.9265 Epoch 363/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1433 - acc: 0.9941 - val_loss: 0.4098 - val_acc: 0.9259 Epoch 364/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1441 - acc: 0.9928 - val_loss: 0.4189 - val_acc: 0.9234 Epoch 365/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1426 - acc: 0.9934 - val_loss: 0.4099 - val_acc: 0.9251 Epoch 366/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1383 - acc: 0.9941 - val_loss: 0.4007 - val_acc: 0.9256 Epoch 367/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1395 - acc: 0.9933 - val_loss: 0.3938 - val_acc: 0.9269 Epoch 368/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1379 - acc: 0.9934 - val_loss: 0.4024 - val_acc: 0.9253 Epoch 369/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1359 - acc: 0.9935 - val_loss: 0.4021 - val_acc: 0.9265 Epoch 370/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1370 - acc: 0.9928 - val_loss: 0.3925 - val_acc: 0.9270 Epoch 371/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1373 - acc: 0.9924 - val_loss: 0.3932 - val_acc: 0.9259 Epoch 372/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1349 - acc: 0.9926 - val_loss: 0.4055 - val_acc: 0.9254 Epoch 373/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1342 - acc: 0.9927 - val_loss: 0.3934 - val_acc: 0.9289 Epoch 374/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1352 - acc: 0.9919 - val_loss: 0.4131 - val_acc: 0.9225 Epoch 375/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1351 - acc: 0.9917 - val_loss: 0.3916 - val_acc: 0.9249 Epoch 376/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1317 - acc: 0.9929 - val_loss: 0.4016 - val_acc: 0.9237 Epoch 377/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1316 - acc: 0.9930 - val_loss: 0.3906 - val_acc: 0.9259 Epoch 378/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1307 - acc: 0.9925 - val_loss: 0.3954 - val_acc: 0.9248 Epoch 379/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1328 - acc: 0.9914 - val_loss: 0.3997 - val_acc: 0.9221 Epoch 380/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1345 - acc: 0.9902 - val_loss: 0.3934 - val_acc: 0.9260 Epoch 381/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1319 - acc: 0.9915 - val_loss: 0.3973 - val_acc: 0.9232 Epoch 382/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1307 - acc: 0.9920 - val_loss: 0.4105 - val_acc: 0.9220 Epoch 383/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1281 - acc: 0.9924 - val_loss: 0.3980 - val_acc: 0.9242 Epoch 384/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1305 - acc: 0.9911 - val_loss: 0.4200 - val_acc: 0.9194 Epoch 385/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1311 - acc: 0.9910 - val_loss: 0.4101 - val_acc: 0.9184 Epoch 386/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1291 - acc: 0.9913 - val_loss: 0.4074 - val_acc: 0.9225 Epoch 387/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1316 - acc: 0.9902 - val_loss: 0.4087 - val_acc: 0.9180 Epoch 388/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1306 - acc: 0.9906 - val_loss: 0.4021 - val_acc: 0.9192 Epoch 389/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1295 - acc: 0.9910 - val_loss: 0.3877 - val_acc: 0.9250 Epoch 390/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1285 - acc: 0.9913 - val_loss: 0.3914 - val_acc: 0.9208 Epoch 391/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1284 - acc: 0.9911 - val_loss: 0.3887 - val_acc: 0.9221 Epoch 392/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1289 - acc: 0.9911 - val_loss: 0.3992 - val_acc: 0.9262 Epoch 393/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1265 - acc: 0.9919 - val_loss: 0.4006 - val_acc: 0.9213 Epoch 394/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1261 - acc: 0.9911 - val_loss: 0.3943 - val_acc: 0.9238 Epoch 395/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1277 - acc: 0.9908 - val_loss: 0.3963 - val_acc: 0.9236 Epoch 396/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1286 - acc: 0.9902 - val_loss: 0.4147 - val_acc: 0.9194 Epoch 397/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1309 - acc: 0.9894 - val_loss: 0.3996 - val_acc: 0.9192 Epoch 398/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1268 - acc: 0.9912 - val_loss: 0.3952 - val_acc: 0.9225 Epoch 399/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1255 - acc: 0.9911 - val_loss: 0.4084 - val_acc: 0.9204 Epoch 400/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1268 - acc: 0.9902 - val_loss: 0.3954 - val_acc: 0.9209 Epoch 401/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1263 - acc: 0.9902 - val_loss: 0.4022 - val_acc: 0.9224 Epoch 402/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1270 - acc: 0.9904 - val_loss: 0.3891 - val_acc: 0.9246 Epoch 403/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1272 - acc: 0.9899 - val_loss: 0.4038 - val_acc: 0.9202 Epoch 404/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1307 - acc: 0.9885 - val_loss: 0.4022 - val_acc: 0.9205 Epoch 405/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1298 - acc: 0.9891 - val_loss: 0.3900 - val_acc: 0.9213 Epoch 406/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1277 - acc: 0.9897 - val_loss: 0.3946 - val_acc: 0.9209 Epoch 407/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1257 - acc: 0.9905 - val_loss: 0.3962 - val_acc: 0.9216 Epoch 408/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1262 - acc: 0.9906 - val_loss: 0.4070 - val_acc: 0.9205 Epoch 409/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1273 - acc: 0.9899 - val_loss: 0.3869 - val_acc: 0.9249 Epoch 410/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1268 - acc: 0.9902 - val_loss: 0.4044 - val_acc: 0.9201 Epoch 411/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1264 - acc: 0.9900 - val_loss: 0.4039 - val_acc: 0.9214 Epoch 412/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1278 - acc: 0.9896 - val_loss: 0.4072 - val_acc: 0.9187 Epoch 413/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1267 - acc: 0.9900 - val_loss: 0.4132 - val_acc: 0.9174 Epoch 414/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1294 - acc: 0.9890 - val_loss: 0.3933 - val_acc: 0.9214 Epoch 415/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1236 - acc: 0.9911 - val_loss: 0.4097 - val_acc: 0.9205 Epoch 416/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1279 - acc: 0.9896 - val_loss: 0.3939 - val_acc: 0.9206 Epoch 417/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1243 - acc: 0.9907 - val_loss: 0.4011 - val_acc: 0.9213 Epoch 418/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1255 - acc: 0.9904 - val_loss: 0.4279 - val_acc: 0.9141 Epoch 419/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1267 - acc: 0.9905 - val_loss: 0.4297 - val_acc: 0.9130 Epoch 420/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1245 - acc: 0.9907 - val_loss: 0.4141 - val_acc: 0.9166 Epoch 421/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1270 - acc: 0.9897 - val_loss: 0.3903 - val_acc: 0.9203 Epoch 422/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1213 - acc: 0.9916 - val_loss: 0.4057 - val_acc: 0.9199 Epoch 423/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1213 - acc: 0.9915 - val_loss: 0.3929 - val_acc: 0.9192 Epoch 424/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1215 - acc: 0.9916 - val_loss: 0.3834 - val_acc: 0.9251 Epoch 425/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1224 - acc: 0.9905 - val_loss: 0.4071 - val_acc: 0.9215 Epoch 426/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1280 - acc: 0.9891 - val_loss: 0.4023 - val_acc: 0.9208 Epoch 427/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1274 - acc: 0.9893 - val_loss: 0.3839 - val_acc: 0.9223 Epoch 428/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1244 - acc: 0.9904 - val_loss: 0.3948 - val_acc: 0.9215 Epoch 429/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1247 - acc: 0.9899 - val_loss: 0.4135 - val_acc: 0.9181 Epoch 430/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1218 - acc: 0.9915 - val_loss: 0.3810 - val_acc: 0.9256 Epoch 431/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1230 - acc: 0.9905 - val_loss: 0.3961 - val_acc: 0.9203 Epoch 432/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1262 - acc: 0.9894 - val_loss: 0.3939 - val_acc: 0.9213 Epoch 433/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1273 - acc: 0.9889 - val_loss: 0.4070 - val_acc: 0.9139 Epoch 434/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1228 - acc: 0.9911 - val_loss: 0.3896 - val_acc: 0.9214 Epoch 435/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1252 - acc: 0.9900 - val_loss: 0.3858 - val_acc: 0.9217 Epoch 436/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1246 - acc: 0.9905 - val_loss: 0.3926 - val_acc: 0.9214 Epoch 437/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1254 - acc: 0.9897 - val_loss: 0.3927 - val_acc: 0.9247 Epoch 438/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1238 - acc: 0.9903 - val_loss: 0.4091 - val_acc: 0.9155 Epoch 439/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1259 - acc: 0.9895 - val_loss: 0.4237 - val_acc: 0.9116 Epoch 440/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1263 - acc: 0.9896 - val_loss: 0.4008 - val_acc: 0.9178 Epoch 441/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1268 - acc: 0.9892 - val_loss: 0.4129 - val_acc: 0.9141 Epoch 442/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1261 - acc: 0.9902 - val_loss: 0.3831 - val_acc: 0.9238 Epoch 443/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1234 - acc: 0.9905 - val_loss: 0.4066 - val_acc: 0.9175 Epoch 444/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1258 - acc: 0.9903 - val_loss: 0.4081 - val_acc: 0.9177 Epoch 445/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1279 - acc: 0.9889 - val_loss: 0.3980 - val_acc: 0.9208 Epoch 446/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1257 - acc: 0.9896 - val_loss: 0.3887 - val_acc: 0.9220 Epoch 447/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1240 - acc: 0.9905 - val_loss: 0.4044 - val_acc: 0.9180 Epoch 448/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1270 - acc: 0.9895 - val_loss: 0.4061 - val_acc: 0.9189 Epoch 449/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1229 - acc: 0.9911 - val_loss: 0.3971 - val_acc: 0.9220 Epoch 450/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1217 - acc: 0.9918 - val_loss: 0.4036 - val_acc: 0.9227 Epoch 451/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1240 - acc: 0.9906 - val_loss: 0.4011 - val_acc: 0.9216 Epoch 452/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1239 - acc: 0.9901 - val_loss: 0.4079 - val_acc: 0.9173 Epoch 453/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1224 - acc: 0.9906 - val_loss: 0.3917 - val_acc: 0.9240 Epoch 454/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1265 - acc: 0.9891 - val_loss: 0.3877 - val_acc: 0.9235 ETA: 34s - loss: 0.1254 - acc: 0.9893 Epoch 455/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1233 - acc: 0.9910 - val_loss: 0.4031 - val_acc: 0.9177 Epoch 456/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1239 - acc: 0.9904 - val_loss: 0.4203 - val_acc: 0.9185 Epoch 457/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1240 - acc: 0.9905 - val_loss: 0.3918 - val_acc: 0.9247 Epoch 458/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1247 - acc: 0.9898 - val_loss: 0.4155 - val_acc: 0.9176 Epoch 459/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1239 - acc: 0.9900 - val_loss: 0.3980 - val_acc: 0.9207 Epoch 460/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1296 - acc: 0.9881 - val_loss: 0.3954 - val_acc: 0.9190 ETA: 1:14 - loss: 0.1236 - acc: 0.9908 - ETA: 1:09 - loss: 0.1257 - acc: 0.9903 Epoch 461/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1232 - acc: 0.9908 - val_loss: 0.4039 - val_acc: 0.9223 Epoch 462/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1283 - acc: 0.9888 - val_loss: 0.4285 - val_acc: 0.9136 Epoch 463/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1264 - acc: 0.9899 - val_loss: 0.4025 - val_acc: 0.9191 Epoch 464/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1236 - acc: 0.9909 - val_loss: 0.3952 - val_acc: 0.9205 Epoch 465/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1204 - acc: 0.9921 - val_loss: 0.4008 - val_acc: 0.9207 ETA: 33s - loss: 0.1189 - acc: 0.9928 Epoch 466/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1233 - acc: 0.9905 - val_loss: 0.4098 - val_acc: 0.9158 Epoch 467/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1207 - acc: 0.9916 - val_loss: 0.4012 - val_acc: 0.9160 Epoch 468/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1231 - acc: 0.9910 - val_loss: 0.3880 - val_acc: 0.9248 Epoch 469/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1241 - acc: 0.9900 - val_loss: 0.4136 - val_acc: 0.9175 Epoch 470/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1255 - acc: 0.9894 - val_loss: 0.4084 - val_acc: 0.9202 Epoch 471/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1253 - acc: 0.9902 - val_loss: 0.3892 - val_acc: 0.9225 Epoch 472/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1269 - acc: 0.9891 - val_loss: 0.4101 - val_acc: 0.9201 Epoch 473/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1226 - acc: 0.9913 - val_loss: 0.4143 - val_acc: 0.9167 Epoch 474/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1230 - acc: 0.9911 - val_loss: 0.4019 - val_acc: 0.9184 Epoch 475/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1242 - acc: 0.9902 - val_loss: 0.4229 - val_acc: 0.9181 Epoch 476/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1251 - acc: 0.9905 - val_loss: 0.3879 - val_acc: 0.9241 Epoch 477/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1243 - acc: 0.9899 - val_loss: 0.4191 - val_acc: 0.9172 Epoch 478/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1240 - acc: 0.9907 - val_loss: 0.3942 - val_acc: 0.9230 Epoch 479/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1230 - acc: 0.9909 - val_loss: 0.3843 - val_acc: 0.9274 Epoch 480/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1207 - acc: 0.9918 - val_loss: 0.4098 - val_acc: 0.9196 ETA: 2s - loss: 0.1208 - acc: 0.9918 Epoch 481/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1244 - acc: 0.9905 - val_loss: 0.4048 - val_acc: 0.9172 Epoch 482/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1250 - acc: 0.9902 - val_loss: 0.4160 - val_acc: 0.9203 Epoch 483/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1226 - acc: 0.9908 - val_loss: 0.4054 - val_acc: 0.9196 Epoch 484/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1206 - acc: 0.9917 - val_loss: 0.4020 - val_acc: 0.9218 Epoch 485/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1277 - acc: 0.9889 - val_loss: 0.3926 - val_acc: 0.9208 ETA: 3s - loss: 0.1276 - acc: 0.9889 Epoch 486/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1244 - acc: 0.9901 - val_loss: 0.3976 - val_acc: 0.9179 ETA: 46s - loss: 0.1215 - acc: 0.9913 Epoch 487/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1216 - acc: 0.9915 - val_loss: 0.4025 - val_acc: 0.9215 Epoch 488/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1231 - acc: 0.9908 - val_loss: 0.4037 - val_acc: 0.9223 Epoch 489/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1259 - acc: 0.9901 - val_loss: 0.4109 - val_acc: 0.9187 Epoch 490/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1247 - acc: 0.9908 - val_loss: 0.4085 - val_acc: 0.9206 Epoch 491/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1214 - acc: 0.9916 - val_loss: 0.4054 - val_acc: 0.9242 ETA: 7s - loss: 0.1211 - acc: 0.9916 Epoch 492/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1253 - acc: 0.9898 - val_loss: 0.4153 - val_acc: 0.9198 Epoch 493/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1203 - acc: 0.9919 - val_loss: 0.3971 - val_acc: 0.9212 Epoch 494/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1243 - acc: 0.9903 - val_loss: 0.4066 - val_acc: 0.9195 Epoch 495/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1256 - acc: 0.9904 - val_loss: 0.4061 - val_acc: 0.9199 Epoch 496/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1266 - acc: 0.9890 - val_loss: 0.3927 - val_acc: 0.9221 Epoch 497/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1256 - acc: 0.9897 - val_loss: 0.4104 - val_acc: 0.9210 Epoch 498/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1218 - acc: 0.9909 - val_loss: 0.4074 - val_acc: 0.9176 Epoch 499/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1225 - acc: 0.9907 - val_loss: 0.3931 - val_acc: 0.9219 Epoch 500/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1238 - acc: 0.9908 - val_loss: 0.3940 - val_acc: 0.9262 Epoch 501/1000 500/500 [==============================] - 90s 181ms/step - loss: 0.1217 - acc: 0.9912 - val_loss: 0.4017 - val_acc: 0.9238 Epoch 502/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1239 - acc: 0.9906 - val_loss: 0.4000 - val_acc: 0.9217 Epoch 503/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1219 - acc: 0.9915 - val_loss: 0.4070 - val_acc: 0.9199 Epoch 504/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1237 - acc: 0.9907 - val_loss: 0.4045 - val_acc: 0.9205 Epoch 505/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1291 - acc: 0.9884 - val_loss: 0.3828 - val_acc: 0.9203 Epoch 506/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1250 - acc: 0.9899 - val_loss: 0.4053 - val_acc: 0.9232 Epoch 507/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1248 - acc: 0.9907 - val_loss: 0.4098 - val_acc: 0.9204 Epoch 508/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1212 - acc: 0.9920 - val_loss: 0.3999 - val_acc: 0.9222 Epoch 509/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1223 - acc: 0.9918 - val_loss: 0.4083 - val_acc: 0.9183 Epoch 510/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1250 - acc: 0.9900 - val_loss: 0.3959 - val_acc: 0.9209 Epoch 511/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1190 - acc: 0.9919 - val_loss: 0.4029 - val_acc: 0.9237 Epoch 512/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1191 - acc: 0.9924 - val_loss: 0.4040 - val_acc: 0.9221 Epoch 513/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1229 - acc: 0.9906 - val_loss: 0.3949 - val_acc: 0.9251 Epoch 514/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1263 - acc: 0.9895 - val_loss: 0.4191 - val_acc: 0.9186 Epoch 515/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1240 - acc: 0.9904 - val_loss: 0.3939 - val_acc: 0.9208 Epoch 516/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1240 - acc: 0.9906 - val_loss: 0.3991 - val_acc: 0.9181 Epoch 517/1000 500/500 [==============================] - 91s 181ms/step - loss: 0.1209 - acc: 0.9915 - val_loss: 0.3953 - val_acc: 0.9216 Epoch 518/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1215 - acc: 0.9910 - val_loss: 0.4056 - val_acc: 0.9219 Epoch 519/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1232 - acc: 0.9905 - val_loss: 0.4092 - val_acc: 0.9187 Epoch 520/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1252 - acc: 0.9899 - val_loss: 0.4108 - val_acc: 0.9190 Epoch 521/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1215 - acc: 0.9912 - val_loss: 0.4031 - val_acc: 0.9191 Epoch 522/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1236 - acc: 0.9903 - val_loss: 0.3995 - val_acc: 0.9201 Epoch 523/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1226 - acc: 0.9916 - val_loss: 0.3823 - val_acc: 0.9264 Epoch 524/1000 500/500 [==============================] - 91s 182ms/step - loss: 0.1229 - acc: 0.9913 - val_loss: 0.3882 - val_acc: 0.9237
本來想著早晨過來看看程式跑得怎麼樣了,卻發現不知道為什麼spyder自動退出了。
Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht, Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458
https://ieeexplore.ieee.org/document/8998530
————————————————
版權宣告:本文為CSDN博主「dangqing1988」的原創文章,遵循 CC 4.0 BY-SA 版權協議,轉載請附上原文出處連結及本宣告。
原文連結:https://blog.csdn.net/dangqing1988/article/details/105670981
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69972329/viewspace-2687525/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄1)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄2)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄3)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄4)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄5)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄6)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄8)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄9)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄10)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄11)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄12)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄13)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄14)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄15)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄16)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄17)函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄26)Cifar10~95.92%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄18)Cifar10~94.28%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄19)Cifar10~93.96%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄23)Cifar10~95.47%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄24)Cifar10~95.80%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄20)Cifar10~94.17%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄22)Cifar10~95.25%函式
- 深度殘差網路+自適應引數化ReLU啟用函式(調參記錄21)Cifar10~95.12%函式
- 注意力機制下的啟用函式:自適應引數化ReLU函式
- 深度殘差網路(ResNet)
- 深度學習之殘差網路深度學習
- 殘差網路再升級之深度殘差收縮網路(附Keras程式碼)Keras
- 深度殘差收縮網路:(三)網路結構
- 深度學習故障診斷——深度殘差收縮網路深度學習
- 深度殘差收縮網路:(一)背景知識
- 深度殘差收縮網路:(二)整體思路
- 學習筆記16:殘差網路筆記
- 十分鐘弄懂深度殘差收縮網路
- 深度殘差收縮網路:(五)實驗驗證
- 深度殘差收縮網路:(六)程式碼實現
- 從ReLU到GELU,一文概覽神經網路的啟用函式神經網路函式
- PHP函式,引數,可變參函式.PHP函式