演算法學習?挑戰高薪的必經之路!讓面試官滿意的排序演算法(圖文解析)

yilian發表於2020-01-06
演算法學習?挑戰高薪的必經之路!讓面試官滿意的排序演算法(圖文解析)

讓面試官滿意的排序演算法(圖文解析)

  • 這種排序演算法能夠讓面試官面露微笑

  • 這種排序演算法集各排序演算法之大成

  • 這種排序演算法邏輯性十足

  • 這種排序演算法能夠展示自己對Java底層的瞭解

    這種排序演算法出自Vladimir Yaroslavskiy、Jon Bentley和Josh Bloch三位大牛之手,它就是JDK的排序演算法——java.util.DualPivotQuicksort(雙支點快排)

想看以往學習內容的朋友
可以看我的GitHub:

覺得文章枯燥的朋友,可以看影片學習,免費領取vx【xx13414521】
演算法學習?挑戰高薪的必經之路!讓面試官滿意的排序演算法(圖文解析)

DualPivotQuicksort

先看一副邏輯圖(如有錯誤請大牛在評論區指正)

演算法學習?挑戰高薪的必經之路!讓面試官滿意的排序演算法(圖文解析)

插排指的是改進版插排——  哨兵插排

快排指的是改進版快排——  雙支點快排

DualPivotQuickSort沒有Object陣列排序的邏輯,此邏輯在Arrays中,好像是歸併+Tim排序

影像應該很清楚:對於不同的資料型別,Java有不同的排序策略:

  • byte、short、char 他們的取值範圍有限,使用計數排序佔用的空間也不過256/65536個單位,只要排序的數量不是特別少(有一個計數排序閾值,低於這個閾值的話就沒有不要用空間換時間了),都應使用計數排序

  • int、long、float、double 他們的取值範圍非常的大,不適合使用計數排序

  • float和double他們又有特殊情況:

    • NAN (not a number),NAN不等於任何數字,甚至不等於自己
    • +0.0,-0.0 ,float和double無法精確表示十進位制小數,我們所看到的十進位制小數其實都是取得近似值,因而會有+0.0(接近0的正浮點數)和-0.0(接近0的負浮點數),在排序流程中統一按0來處理,因而最後要調整一下-0.0和+0.0的位置關係
  • Object

計數排序

計數排序是以空間換時間的排序演算法,它時間複雜度O(n),空間複雜度O(m)(m為排序數值可能取值的數量),只有在範圍較小的時候才應該考慮計數排序

(原始碼以short為例)

int[] count = new int[NUM_SHORT_VALUES]; //1 << 16 = 65536,即short的可取值數量//計數,left和right為陣列要排序的範圍的左界和右界//注意,直接把for (int i = left - 1; ++i <= right;count[a[i] - Short.MIN_VALUE]++);//排序for (int i = NUM_SHORT_VALUES, k = right + 1; k > left; ) {    while (count[--i] == 0);    short value = (short) (i + Short.MIN_VALUE);    int s = count[i];    do {
        a[--k] = value;
    } while (--s > 0);
}

哨兵插排

當陣列元素較少時,時間O(n 2)和O(log n)其實相差無幾,而插排的空間佔用率要少於快排和歸併排序,因而當陣列元素較少時(<插排閾值),優先使用插排

哨兵插排是對插排的最佳化,原插排每次取一個值進行遍歷插入,而哨兵插排則取兩個,較大的一個(小端在前的排序)作為哨兵,當哨兵遍歷到自己的位置時,另一個值可以直接從哨兵當前位置開始遍歷,而不用再重頭遍歷

演算法學習?挑戰高薪的必經之路!讓面試官滿意的排序演算法(圖文解析)

只畫了靜態圖,如果有好的繪製Gif的工具請在評論區告訴我哦

我們來看一下原始碼:

if (leftmost) {    //傳統插排(無哨兵Sentinel)
    //遍歷
    //迴圈向左比較(<左側元素——換位)-直到大於左側元素
    for (int i = left, j = i; i < right; j = ++i) {        int ai = a[i + 1];        while (ai < a[j]) {
            a[j + 1] = a[j];            if (j-- == left) {                break;
            }
        }
        a[j + 1] = ai;
    }    
    //哨兵插排} else {    //如果一開始就是排好序的——直接返回
    do {        if (left >= right) {            return;
        }
    } while (a[++left] >= a[left - 1]);    //以兩個為單位遍歷,大的元素充當哨兵,以減少小的元素迴圈向左比較的範圍
    for (int k = left; ++left <= right; k = ++left) {        int a1 = a[k], a2 = a[left];        if (a1 < a2) {
            a2 = a1; a1 = a[left];
        }        while (a1 < a[--k]) {
            a[k + 2] = a[k];
        }
        a[++k + 1] = a1;        while (a2 < a[--k]) {
            a[k + 1] = a[k];
        }
        a[k + 1] = a2;
    }    //確保最後一個元素被排序
    int last = a[right];    while (last < a[--right]) {
        a[right + 1] = a[right];
    }
    a[right + 1] = last;
}return;

雙支點快排

重頭戲:雙支點快排!

快排雖然穩定性不如歸併排序,但是它不用複製來複制去,省去了一段陣列的空間,在陣列元素較少的情況下穩定性影響也會下降(>插排閾值 ,<快排閾值),優先使用快排

雙支點快排在原有的快排基礎上,多加一個支點,左右共進,效率提升

看圖:

  1. 第一步,取支點

    演算法學習?挑戰高薪的必經之路!讓面試官滿意的排序演算法(圖文解析)

    注意:如果5個節點有相等的任兩個節點,說明資料不夠均勻,那就要使用單節點快排

  2. 快排

    演算法學習?挑戰高薪的必經之路!讓面試官滿意的排序演算法(圖文解析)

原始碼(int為例,這麼長估計也沒人看)

// Inexpensive approximation of length / 7 // 快排閾值是286 其7分之一小於等於1/8+1/64+1int seventh = (length >> 3) + (length >> 6) + 1;// 獲取分成7份的五個中間點int e3 = (left + right) >>> 1; // The midpointint e2 = e3 - seventh;int e1 = e2 - seventh;int e4 = e3 + seventh;int e5 = e4 + seventh;// 保證中間點的元素從小到大排序if (a[e2] < a[e1]) { 
    int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }if (a[e3] < a[e2]) { 
    int t = a[e3]; a[e3] = a[e2]; a[e2] = t;    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}if (a[e4] < a[e3]) { 
    int t = a[e4]; a[e4] = a[e3]; a[e3] = t;    if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                   }
}if (a[e5] < a[e4]) { 
    int t = a[e5]; a[e5] = a[e4]; a[e4] = t;                    
    if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;                    if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;                                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                                   }
                   }
}// Pointersint less  = left;  // The index of the first element of center partint great = right; // The index before the first element of right part//點彼此不相等——分三段快排,否則分兩段if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {    /*
             * Use the second and fourth of the five sorted elements as pivots.
             * These values are inexpensive approximations of the first and
             * second terciles of the array. Note that pivot1 <= pivot2.
             */
    int pivot1 = a[e2];    int pivot2 = a[e4];    /*
             * The first and the last elements to be sorted are moved to the
             * locations formerly occupied by the pivots. When partitioning
             * is complete, the pivots are swapped back into their final
             * positions, and excluded from subsequent sorting.
             */
    a[e2] = a[left];
    a[e4] = a[right];    while (a[++less] < pivot1);    while (a[--great] > pivot2);    /*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             */
    outer:    for (int k = less - 1; ++k <= great; ) {        int ak = a[k];        if (ak < pivot1) { // Move a[k] to left part
            a[k] = a[less];            /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
            a[less] = ak;
            ++less;
        } else if (ak > pivot2) { // Move a[k] to right part
            while (a[great] > pivot2) {                if (great-- == k) {                    break outer;
                }
            }            if (a[great] < pivot1) { // a[great] <= pivot2
                a[k] = a[less];
                a[less] = a[great];
                ++less;
            } else { // pivot1 <= a[great] <= pivot2
                a[k] = a[great];
            }            /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
            a[great] = ak;
            --great;
        }
    }    // Swap pivots into their final positions
    a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
    a[right] = a[great + 1]; a[great + 1] = pivot2;    // Sort left and right parts recursively, excluding known pivots
    sort(a, left, less - 2, leftmost);
    sort(a, great + 2, right, false);    /*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
    if (less < e1 && e5 < great) {        /*
                 * Skip elements, which are equal to pivot values.
                 */
        while (a[less] == pivot1) {
            ++less;
        }        while (a[great] == pivot2) {
            --great;
        }        /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
        outer:        for (int k = less - 1; ++k <= great; ) {            int ak = a[k];            if (ak == pivot1) { // Move a[k] to left part
                a[k] = a[less];
                a[less] = ak;
                ++less;
            } else if (ak == pivot2) { // Move a[k] to right part
                while (a[great] == pivot2) {                    if (great-- == k) {                        break outer;
                    }
                }                if (a[great] == pivot1) { // a[great] < pivot2
                    a[k] = a[less];                    /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                    a[less] = pivot1;
                    ++less;
                } else { // pivot1 < a[great] < pivot2
                    a[k] = a[great];
                }
                a[great] = ak;
                --great;
            }
        }
    }    // Sort center part recursively
    sort(a, less, great, false);
} else { // Partitioning with one pivot
    /*
             * Use the third of the five sorted elements as pivot.
             * This value is inexpensive approximation of the median.
             */
    int pivot = a[e3];    /*
             * Partitioning degenerates to the traditional 3-way
             * (or "Dutch National Flag") schema:
             *
             *   left part    center part              right part
             * +-------------------------------------------------+
             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
             * +-------------------------------------------------+
             *              ^              ^        ^
             *              |              |        |
             *             less            k      great
             *
             * Invariants:
             *
             *   all in (left, less)   < pivot
             *   all in [less, k)     == pivot
             *   all in (great, right) > pivot
             *
             * Pointer k is the first index of ?-part.
             */
    for (int k = less; k <= great; ++k) {        if (a[k] == pivot) {            continue;
        }        int ak = a[k];        if (ak < pivot) { // Move a[k] to left part
            a[k] = a[less];
            a[less] = ak;
            ++less;
        } else { // a[k] > pivot - Move a[k] to right part
            while (a[great] > pivot) {
                --great;
            }            if (a[great] < pivot) { // a[great] <= pivot
                a[k] = a[less];
                a[less] = a[great];
                ++less;
            } else { // a[great] == pivot
                /*
                         * Even though a[great] equals to pivot, the
                         * assignment a[k] = pivot may be incorrect,
                         * if a[great] and pivot are floating-point
                         * zeros of different signs. Therefore in float
                         * and double sorting methods we have to use
                         * more accurate assignment a[k] = a[great].
                         */
                a[k] = pivot;
            }
            a[great] = ak;
            --great;
        }
    }    /*
             * Sort left and right parts recursively.
             * All elements from center part are equal
             * and, therefore, already sorted.
             */
    sort(a, left, less - 1, leftmost);
    sort(a, great + 1, right, false);
}

歸併排序

你不會以為元素多(>快排閾值)就一定要用歸併了吧?

錯!元素多時確實對演算法的穩定性有要求,可是如果這些元素能夠穩定快排呢?

開發JDK的大牛顯然考慮了這一點:他們在歸併排序之前對元素進行了是否能穩定快排的判斷:

  • 如果陣列本身幾乎已經排好了(可以看出幾段有序陣列的拼接),那還排什麼,理一理返回就行了
  • 如果出現連續33個相等元素——使用快排(實話說,我沒弄明白為什麼,有無大牛給我指點迷津?)
//判斷結構是否適合歸併排序int[] run = new int[MAX_RUN_COUNT + 1];int count = 0; run[0] = left;// Check if the array is nearly sortedfor (int k = left; k < right; run[count] = k) {    if (a[k] < a[k + 1]) { // ascending
        while (++k <= right && a[k - 1] <= a[k]);
    } else if (a[k] > a[k + 1]) { // descending
        while (++k <= right && a[k - 1] >= a[k]);        for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {            int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
        }
    } else { 
        //連續MAX_RUN_LENGTH(33)個相等元素,使用快排
        for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {            if (--m == 0) {
                sort(a, left, right, true);                return;
            }
        }
    }    //count達到MAX_RUN_LENGTH,使用快排
    if (++count == MAX_RUN_COUNT) {
        sort(a, left, right, true);        return;
    }
}// Check special cases// Implementation note: variable "right" is increased by 1.if (run[count] == right++) { // The last run contains one element
    run[++count] = right;
} else if (count == 1) { // The array is already sorted
    return;
}

歸併排序原始碼

byte odd = 0;for (int n = 1; (n <<= 1) < count; odd ^= 1);// Use or create temporary array b for mergingint[] b;                 // temp array; alternates with aint ao, bo;              // array offsets from 'left'int blen = right - left; // space needed for bif (work == null || workLen < blen || workBase + blen > work.length) {
    work = new int[blen];
    workBase = 0;
}if (odd == 0) {
    System.arraycopy(a, left, work, workBase, blen);
    b = a;
    bo = 0;
    a = work;
    ao = workBase - left;
} else {
    b = work;
    ao = 0;
    bo = workBase - left;
}// Mergingfor (int last; count > 1; count = last) {    for (int k = (last = 0) + 2; k <= count; k += 2) {        int hi = run[k], mi = run[k - 1];        for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {            if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
                b[i + bo] = a[p++ + ao];
            } else {
                b[i + bo] = a[q++ + ao];
            }
        }
        run[++last] = hi;
    }    if ((count & 1) != 0) {        for (int i = right, lo = run[count - 1]; --i >= lo;
             b[i + bo] = a[i + ao]
            );
        run[++last] = right;
    }    int[] t = a; a = b; b = t;    int o = ao; ao = bo; bo = o;
}

最後

第一次看文章的朋友可以關注我
Android進階之路
不定期釋出大廠面試題、Android架構技術知識點及解析等內容,還有學習PDF+原始碼筆記+面試文件+進階影片分享

點選就看  學習小彩蛋
點個贊,收藏起來認真學習哦

演算法學習?挑戰高薪的必經之路!讓面試官滿意的排序演算法(圖文解析)


來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69952849/viewspace-2672205/,如需轉載,請註明出處,否則將追究法律責任。

相關文章