前端 排序演算法總結

zimo發表於2017-09-21

前言

排序演算法可能是你學程式設計第一個學習的演算法,還記得冒泡嗎?

當然,排序和查詢兩類演算法是面試的熱門選項。如果你是一個會寫快排的程式猿,面試官在比較你和一個連快排都不會寫的人的時候,會優先選擇你的。那麼,前端需要會排序嗎?答案是毋庸置疑的,必須會。現在的前端對計算機基礎要求越來越高了,如果連排序這些演算法都不會,那麼發展前景就有限了。本篇將會總結一下,在前端的一些排序演算法。如果你喜歡我的文章,歡迎評論,歡迎Star~。歡迎關注我的github部落格

正文

首先,我們可以先來看一下js自身的排序演算法sort()

Array.sort

相信每個使用js的都用過這個函式,但是,這個函式本身有些優點和缺點。我們可以通過一個例子來看一下它的功能:

const arr = [1, 20, 10, 30, 22, 11, 55, 24, 31, 88, 12, 100, 50];

console.log(arr.sort());   //[ 1, 10, 100, 11, 12, 20, 22, 24, 30, 31, 50, 55, 88 ]

console.log(arr.sort((item1, item2) => item1 - item2)); //[ 1, 10, 11, 12, 20, 22, 24, 30, 31, 50, 55, 88, 100 ]複製程式碼

相信你也已經看出來它在處理上的一些差異了吧。首先,js中的sort會將排序的元素型別轉化成字串進行排序。不過它是一個高階函式,可以接受一個函式作為引數。而我們可以通過傳入內部的函式,來調整陣列的升序或者降序。

sort函式的效能:相信對於排序演算法效能來說,時間複雜度是至關重要的一個參考因素。那麼,sort函式的演算法效能如何呢?通過v8引擎的原始碼可以看出,Array.sort是通過javascript來實現的,而使用的演算法是快速排序,但是從原始碼的角度來看,在實現上明顯比我們所使用的快速排序複雜多了,主要是做了效能上的優化。所以,我們可以放心的使用sort()進行排序。

氣泡排序

氣泡排序,它的名字由來於一副圖——魚吐泡泡,泡泡越往上越大。

回憶起這個演算法,還是最初大一的c++課上面。還是自己上臺,在黑板上實現的呢!

思路:第一次迴圈,開始比較當前元素與下一個元素的大小,如果比下一個元素小或者相等,則不需要交換兩個元素的值;若比下一個元素大的話,則交換兩個元素的值。然後,遍歷整個陣列,第一次遍歷完之後,相同操作遍歷第二遍。

圖例:

氣泡排序
氣泡排序

程式碼實現:

const arr = [1, 20, 10, 30, 22, 11, 55, 24, 31, 88, 12, 100, 50];

function bubbleSort(arr){
  for(let i = 0; i < arr.length - 1; i++){
    for(let j = 0; j < arr.length - i - 1; j++){
      if(arr[j] > arr[j + 1]){
        swap(arr, j, j+1);
      }
    }
  }
  return arr;
}

function swap(arr, i, j){
  let temp = arr[i];
  arr[i] = arr[j];
  arr[j] = temp;
}
console.log(arr);複製程式碼

程式碼地址

效能:

  • 時間複雜度:平均時間複雜度是O(n^2)
  • 空間複雜度:由於輔助空間為常數,所以空間複雜度是O(1);

改進:

我們可以對氣泡排序進行改進,使得它的時間複雜度在大多數順序的情況下,減小到O(n);

  1. 加一個標誌位,如果沒有進行交換,將標誌位置為false,表示排序完成。

程式碼地址

const arr = [1, 20, 10, 30, 22, 11, 55, 24, 31, 88, 12, 100, 50];

function swap(arr, i, j){
  const temp = arr[i];
  arr[i] = arr[j];
  arr[j] = temp;
}

for(let i = 0; i < arr.length - 1; i++){
  let flag = false;
  for(let j = 0; j < arr.length - 1 - i; j++){
    if(arr[j] > arr[j+1]){
      swap(arr, j, j+1);
      flag = true;
    }
  }

  if(!flag){
    break;
  }
}

console.log(arr);  //[ 1, 10, 11, 12, 20, 22, 24, 30, 31, 50, 55, 88, 100 ]複製程式碼
  1. 記錄最後一次交換的位置, 因為最後一次交換的數,是在這一次排序當中最大的數,之後的數都比它大。在最佳狀態時,時間複雜度也會縮小到O(n);

程式碼地址

const arr = [1, 20, 10, 30, 22, 11, 55, 24, 31, 88, 12, 100, 50 ,112];

function swap(arr, i, j){
  let temp = arr[i];
  arr[i] = arr[j];
  arr[j] = temp
}

function improveBubble(arr, len){
  for(let i = len - 1; i >= 0; i--){
    let pos = 0;
    for(let j = 0; j < i; j++){
      if(arr[j] > arr[j+1]){
        swap(arr, j, j+1);
        pos = j + 1;
      }
    }
    len = pos + 1;
  }
  return arr;
}

console.log(improveBubble(arr, arr.length));  //[ 1, 10, 11, 12, 20, 22, 24, 30, 31, 50, 55, 88, 100, 112 ]複製程式碼

選擇排序

選擇排序,即每次都選擇最小的,然後換位置

思路:

第一遍,從陣列中選出最小的,與第一個元素進行交換;第二遍,從第二個元素開始,找出最小的,與第二個元素進行交換;依次迴圈,完成排序

圖例:

選擇排序
選擇排序

程式碼實現:

const arr = [1, 20, 10, 30, 22, 11, 55, 24, 31, 88, 12, 100, 50];

function swap(arr, i, j){
  var temp = arr[i];
  arr[i] = arr[j];
  arr[j] = temp;
}

function selectionSort(arr){
  for(let i = 0; i < arr.length - 1; i++){
    let index = i;
    for(let j = i+1; j < arr.length; j++){
      if(arr[index] > arr[j]){
        index = j;
      }
    }
    swap(arr, i, index);
  }
  return arr;
}

console.log(selectionSort(arr)); //[ 1, 10, 11, 12, 20, 22, 24, 30, 31, 50, 55, 88, 100 ]複製程式碼

程式碼地址

效能:

  • 時間複雜度:平均時間複雜度是O(n^2),這是一個不穩定的演算法,因為每次交換之後,它都改變了後續陣列的順序。

  • 空間複雜度:輔助空間是常數,空間複雜度為O(1);

插入排序

插入排序,即將元素插入到已排序好的陣列中

思路:

首先,迴圈原陣列,然後,將當前位置的元素,插入到之前已排序好的陣列中,依次操作。

圖例:

插入排序
插入排序

程式碼實現:

const arr = [1, 20, 10, 30, 22, 11, 55, 24, 0, 31, 88, 12, 100, 50 ,112];

function insertSort(arr){
  for(let i = 0; i < arr.length; i++){
    let temp = arr[i];
    for(let j = 0; j < i; j++){
      if(temp < arr[j] && j === 0){
        arr.splice(i, 1);
        arr.unshift(temp);
        break;
      }else if(temp > arr[j] && temp < arr[j+1] && j < i - 1){
        arr.splice(i, 1);
        arr.splice(j+1, 0, temp);
        break;
      }
    }
  }
  return arr;
}

console.log(insertSort(arr));  //[ 0, 1, 10, 11, 12, 20, 22, 24, 30, 31, 50, 55, 88, 100, 112 ]複製程式碼

程式碼地址

效能:

  • 時間複雜度:平均演算法複雜度為O(n^2)
  • 空間複雜度:輔助空間為常數,空間複雜度是O(1)

我們仨之間

其實,三個演算法都是難兄難弟,因為演算法的時間複雜度都是在O(n^2)。在最壞情況下,它們都需要對整個陣列進行重新調整。只是選擇排序比較不穩定。

快速排序

快速排序,從它的名字就應該知道它很快,時間複雜度很低,效能很好。它將排序演算法的時間複雜度降低到O(nlogn)

思路:

首先,我們需要找到一個基數,然後將比基數小的值放在基數的左邊,將比基數大的值放在基數的右邊,之後進行遞迴那兩組已經歸類好的陣列。

圖例:

原圖片太大,放一張小圖,並且附上原圖片地址,有興趣的可以看一下:

快速排序
快速排序

原圖片地址

程式碼實現:

const arr = [30, 32, 6, 24, 37, 32, 45, 21, 38, 23, 47];

function quickSort(arr){
  if(arr.length <= 1){
    return arr;
  }
  let temp = arr[0];
  const left = [];
  const right = [];
  for(var i = 1; i < arr.length; i++){
    if(arr[i] > temp){
      right.push(arr[i]);
    }else{
      left.push(arr[i]);
    }
  }
  return quickSort(left).concat([temp], quickSort(right));
}

console.log(quickSort(arr));複製程式碼

程式碼地址

效能:

  • 時間複雜度:平均時間複雜度O(nlogn),只有在特殊情況下會是O(n^2),不過這種情況非常少
  • 空間複雜度:輔助空間是logn,所以空間複雜度為O(logn)

歸併排序

歸併排序,即將陣列分成不同部分,然後注意排序之後,進行合併

思路:

首先,將相鄰的兩個數進行排序,形成n/2對,然後在每兩對進行合併,不斷重複,直至排序完。

圖例:

歸併排序
歸併排序

程式碼實現:

//迭代版本
const arr = [3,44,38,5,47,15,36,26,27,2,46,4,19,50,48]

function mergeSort(arr){
  const len = arr.length;

  for(let seg = 1; seg < len; seg += seg){
    let arrB = [];
    for(let start = 0; start < len; start += 2*seg){
      let row = start, mid = Math.min(start+seg, len), heig = Math.min(start + 2*seg, len);
      let start1 = start, end1 = mid;
      let start2 = mid, end2 = heig;
      while(start1 < end1 && start2 < end2){
        arr[start1] < arr[start2] ? arrB.push(arr[start1++]) : arrB.push(arr[start2++]);
      }
      while(start1 < end1){
        arrB.push(arr[start1++]);
      }
      while(start2 < end2){
        arrB.push(arr[start2++]);
      }
    }
    arr = arrB;
  }

  return arr;
}

console.log(mergeSort(arr));複製程式碼

程式碼地址

//遞迴版
const arr = [3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];

function mergeSort(arr, seg = 1){
  const len = arr.length;
  if(seg > len){
    return arr;
  }
  const arrB = [];
  for(var start = 0; start < len; start += 2*seg){
    let low = start, mid = Math.min(start+seg, len), heig = Math.min(start+2*seg, len);
    let start1 = low, end1 = mid;
    let start2 = mid, end2 = heig;
    while(start1 < end1 && start2 < end2){
      arr[start1] < arr[start2] ? arrB.push(arr[start1++]) : arrB.push(arr[start2++]);
    }
    while(start1 < end1){
      arrB.push(arr[start1++]);
    }
    while(start2 < end2){
      arrB.push(arr[start2++]);
    }
  }
  return mergeSort(arrB, seg * 2);
}

console.log(mergeSort(arr));複製程式碼

程式碼地址

效能:

  • 時間複雜度:平均時間複雜度是O(nlogn)
  • 空間複雜度:輔助空間為n,空間複雜度為O(n)

基數排序

基數排序,就是將數的每一位進行一次排序,最終返回一個正常順序的陣列。

思路:

首先,比較個位的數字大小,將陣列的順序變成按個位依次遞增的,之後再比較十位,再比較百位的,直至最後一位。

圖例:

基數排序
基數排序

程式碼實現:

const arr = [3221, 1, 10, 9680, 577, 9420, 7, 5622, 4793, 2030, 3138, 82, 2599, 743, 4127, 10000];

function radixSort(arr){
  let maxNum = Math.max(...arr);
  let dis = 0;
  const len = arr.length;
  const count = new Array(10);
  const tmp = new Array(len);
  while(maxNum >=1){
    maxNum /= 10;
    dis++;
  }
  for(let i = 1, radix = 1; i <= dis; i++){
    for(let j = 0; j < 10; j++){
      count[j] = 0;
    }
    for(let j = 0; j < len; j++){
      let k = parseInt(arr[j] / radix) % 10;
      count[k]++;
    }
    for(let j = 1; j < 10; j++){
      count[j] += count[j - 1];
    }
    for(let j = len - 1; j >= 0 ; j--){
      let k = parseInt(arr[j] / radix) % 10;
      tmp[count[k] - 1] = arr[j];
      count[k]--;
    }
    for(let j = 0; j < len; j++){
      arr[j] = tmp[j]; 
    }
    radix *= 10;
  }
  return arr;
}

console.log(radixSort(arr));複製程式碼

程式碼地址

效能:

  • 時間複雜度:平均時間複雜度O(k*n),最壞的情況是O(n^2)

總結

我們一共實現了6種排序演算法,對於前端開發來說,熟悉前面4種是必須的。特別是快排,基本面試必考題。本篇的內容總結分為六部分:

  • 氣泡排序
  • 選擇排序
  • 插入排序
  • 快速排序
  • 歸併排序
  • 基數排序

排序演算法,是演算法的基礎部分,需要明白它的原理,總結下來排序可以分為比較排序和統計排序兩種方式,本篇前5種均為比較排序,基數排序屬於統計排序的一種。希望看完的你,能夠去動手敲敲程式碼,理解一下

如果你對我寫的有疑問,可以評論,如我寫的有錯誤,歡迎指正。你喜歡我的部落格,請給我關注Star~呦。大家一起總結一起進步。歡迎關注我的github部落格

相關文章