CODY Contest 2020 Basics - Binary Logic全10題
第一題 Problem 15. Find the longest sequence of 1's in a binary sequence.
Given a string such as
s = '011110010000000100010111'
find the length of the longest string of consecutive 1's. In this example, the answer would be 4.
Example:
Input x = '110100111'
Output y is 3
在只有‘0’和‘1’的字串x中求‘1’連續出現的最大長度,由於只存在‘1’和‘0’,可以利用‘0’對x進行分割,得到每個1連續出現的子字串,並存放在元組內,然後依次遍歷子字串獲取長度即可(元組索引需要使用{})
function y = lengthOnes(x)
x=strsplit(x,'0');
y=0;
for i=1:length(x)
y=max(y,length(x{i}));
end
end
第二題 Problem 2522. Convert given decimal number to binary number.
Convert given decimal number to binary number.
Example x=10, then answer must be 1010.
將輸入的十進位制數轉為二進位制數。
不想麻煩的可以直接使用dec2bin將輸入的十進位制轉為二進位制,但輸出為字串,再使用str2num即可。
function y = dec_bin(x)
y = str2num(dec2bin(x));
end
第三題 Problem 2678. Find out sum and carry of Binary adder
Find out sum and carry of a binary adder if previous carry is given with two bits (x and y) for addition.
Examples
Previous carry is 1 and x=y=1. Addition is 1 and carry is also 1.
Previous carry is 0 and x=y=1. Addition is 0 and carry is also 1.
Previous carry is 0 and x=1, y=0. Addition is 1 and carry is also 0.
之前有進位pc,求當前位x+y後的進位和 當前位的結果。
當前位有三個值,x y 和pc,首先將他們相加,因為是二進位制表示,如果x+y+pc的值大於等於2,那麼就會向下一位進1(carry=1),並且當前位的值減去2,否則carry等於0.簡化為carry等於是否pc+x+y大於等於2;sum值等於pc+x+y除以2的餘數。
function [sum, carry] = bin_sum_carry(pc,x,y)
sum=mod(x+y+pc,2);
carry=x+y+pc>=2;
end
第四題 Problem 34. Binary numbers
Given a positive, scalar integer n, create a (2^n)-by-n double-precision matrix containing the binary numbers from 0 through 2^n-1. Each row of the matrix represents one binary number. For example, if n = 3, then your code could return
>> binary_numbers(3)
ans =
1 1 1
0 0 0
0 1 1
0 1 0
0 0 1
1 0 0
1 1 0
1 0 1
The order of the rows does not matter.
給定n,返回2^n * n大小的矩陣,每行代表一個0~2^n-1的二進位制數,根據文案對於n=3的樣例,二進位制數的位置似乎是任意的,不用按照大小排列。
但是按照順序寫的話可能更加如意,本題思路如下:對於n等於3和4來說,從大到小排列如下:
可以看出第一列的前半部分全為1,第二列的1-4、9-12為1……可以得出,從第一列到最後一列,1連續出現的長度從2^(n-1)不斷以1/2的倍數縮小到2,如果把連續的1或0看作是一個塊的話,那麼從第一列到最後一列的塊數從2到2^n以2倍速增長。首先zeros建立矩陣,假設現在是第i列,那麼1的塊長是2^(n-i),1和0的塊數是2^i,當j為奇數時,第j塊為1,因為用zeros建立,所以不需要管0。所以矩陣A第i列第j塊1的位置為A((j-1)*batch_size+1:j*batch_size,i),batch_size表示塊長。
function A = binary_numbers(n)
A=zeros(2^n,n);
for i=1:n
batch_size=2^n/2^i;
batch_num=2^i;
for j=1:batch_num
if mod(j,2)==1
A((j-1)*batch_size+1:j*batch_size,i)=1;
end
end
end
end
當然,也可以建立向量1~2^n-1,然後分別轉為二進位制,然後儲存在每行中。
第五題 Problem 108. Given an unsigned integer x, find the largest y by rearranging the bits in x
Given an unsigned integer x, find the largest y by rearranging the bits in x.
Example:
Input x = 10
Output y is 12
since 10 in binary is 1010 and 12 in binary is 1100.
給定無符號數x,求對x的二進位制的數值重新排列後的最大十進位制數,比如x為10,那麼二進位制位1010,重排列後最大位1100,十進位制為0.
可以轉二進位制,然後從大到小排列(重排列最大的二進位制一定是前邊全是1),然後再轉到十進位制即可。
function y = maxit(x)
x=dec2bin(x);
y=sort(x,'descend');
y=bin2dec(y);
end
第六題 Problem 1295. Bit Reversal
Given an unsigned integer x, convert it to binary with n bits, reverse the order of the bits, and convert it back to an integer.
給定無符號數,將其轉為n位的二進位制數(前邊補0),然後位進行翻轉,在返回十進位制。比如x=11 n=5,所以二進位制為01011,翻轉為11010,值為26.(最開始看成反轉了,即將每位的0換成1,1換成0)
先轉為二進位制,看看字串的長度是否小於n,如果小於n那麼前遍補n-length(x)個0:x=[char(zeros(1,n-length(x))+48),x]; x表示字串。
然後用flipdim翻轉後轉回十進位制。
function y = bit_reverse(x,n)
x=dec2bin(x);
if length(x)<n
x=[char(zeros(1,n-length(x))+48),x];
end
y=bin2dec(flipdim(x,2));
end
第七題 Problem 1547. Relative ratio of "1" in binary number
Input(n) is positive integer number
Output(r) is (number of "1" in binary input) / (number of bits).
Example:
- n=0; r=0
- n=1; r=1
- n=2; r=0.5
統計給定十進位制數的二進位制中‘1’的佔比。
將n轉為二進位制後統計‘1’的次數與長度之比即可。
function r = ones_ratio(n)
n=dec2bin(n);
r=sum(n=='1')/length(n);
end
第八題 Problem 2891. Binary code (array)
Write a function which calculates the binary code of a number 'n' and gives the result as an array(vector).
Example:
Input n = 123
Output y =[1,1,1,1,0,1,1]
編寫一個函式將n轉為二進位制並用向量儲存,第一種就是用dec2bin後,將字元轉為數字, 但是用太多了不好,這次自己試著寫寫吧。
遞迴,每次取x除以2的餘數放入向量尾部,然後x=x/2,直到x=0,然後將向量翻轉。
function y = dectobin(x)
i=1;
while x>0
y(i)=mod(x,2);
i=i+1;
x=floor(x/2);
end
y=flipdim(y,2);
end
第九題 Problem 43977. Converting binary to decimals
Convert binary to decimals.
Example:
010111 = 23.
110000 = 48.
將二進位制數轉為十進位制。
設y=0,取x的最後一位,y=y+最後一位乘以2的i-1次方,i表示第j次計算,然後取x除以10的向下取整,提交了才發現測試用例的x為字串,字串的話直接從後向前遍歷,都不用取餘除10.懶得改成字串的方法了,直接在最前邊將字串轉為數字。
function y = bin_to_dec(d)
d=str2num(d);
y=0;
i=0;
while d>0
y=y+mod(d,10)*2^i;
i=i+1;
d=floor(d/10);
end
end
第十題 Problem 2869. There are 10 types of people in the world
Those who know binary, and those who don't.
The number 2015 is a palindrome in binary (11111011111 to be exact) Given a year (in base 10 notation) calculate how many more years it will be until the next year that is a binary palindrome. For example, if you are given the year 1881 (palindrome in base 10! :-), the function should output 30, as the next year that is a binary palindrome is 1911. You can assume all years are positive integers.
Good luck!!kcul dooG
世界上有10種人,一種是懂二進位制的人,另一種是不懂二進位制的人。
2015的二進位制(11111011111)是迴文,給定十進位制年份,判斷下一個為迴文的年份,比如1881年的下一個迴文年份為1911,所以返回他們的年份之差30。聽起來是二進位制和迴文的結合。似乎並沒有找到一個快速的方法,只能逐年地判斷是否是迴文。先將x轉為二進位制,判斷是否是迴文,如果是則結束,否則y+1,並且在二進位制字串x尾部+1,然後對加1後的進行進位,得到了下一年的二進位制,而不需要重複地計算每年的二進位制。
function y = yearraey(x)
x=dec2bin(x);
y=0;
while 1
ret = 1;%判斷是否為迴文
for i=1:length(x)/2
if (x(i)~=x(end-i+1))
ret=0;
break;
end
end
if ret%是迴文 結束
return;
end
y=y+1;%否則 +1
x(end)=x(end)+1;
for i=length(x):-1:1%對x進行進位
if x(i)=='2' %需要進位
x(i)='0';
if i>1
x(i-1)=x(i-1)+1;
else
x=['1',x];
break;
end
else %直到不需要進位
break;
end
end
end
end
相關文章
- Arrays Basics
- deep learing basics
- KEYENCE Programming Contest 2024(AtCoder Beginner Contest 374)題解
- 2020 China Collegiate Programming Contest Qinhuangdao Site
- Hitachi Vantara Programming Contest 2024(AtCoder Beginner Contest 368)題解A~D
- Toyota Programming Contest 2024#11(AtCoder Beginner Contest 379)題解
- 2019-2020 ICPC Southeastern European Regional Programming Contest (SEERC 2019) 補題記錄AST
- AtCoder Beginner Contest 353 (補題)
- AtCoder Beginner Contest 352題解
- AtCoder Beginner Contest 378 題解
- 題解:AtCoder Beginner Contest 367
- AtCoder Beginner Contest 381 題解
- 題解:AtCoder Beginner Contest 371
- AtCoder Beginner Contest 376 題解
- Markdown: Basics (快速入門)
- Lecture 02 Recap of CG Basics
- ch17_multithreading_basicsthread
- 2020-2021 “Orz Panda” Cup Programming Contest
- Toyota Programming Contest 2024#11(AtCoder Beginner Contest 379)題解總結
- AtCoder Beginner Contest 350 A - G 題解
- AtCoder Beginner Contest 380 (A~E)題解
- AtCoder Beginner Contest 238 A - F 題解
- CF1945E Binary Search 題解
- CodeForces - 976A:Minimum Binary Number(水題)
- TOYOTA SYSTEMS Programming Contest 2024(AtCoder Beginner Contest 377) 補題記錄(A-E)
- Daiwa Securities Co. Ltd. Programming Contest 2024(AtCoder Beginner Contest 383)題解AI
- Leetcode Weekly Contest 95解題報告LeetCode
- LeetCode Weekly Contest 96 解題報告LeetCode
- AtCoder Beginner Contest 345 A-F 題解
- AtCoder Beginner Contest 372 補題記錄
- Atcoder Beginner Contest 380 題解 (A-G)
- AtCoder Beginner Contest 370 補題記錄
- AtCoder Beginner Contest 369 補題記錄
- Atcoder Beginner Contest 356題解(D、E)
- CF538B Quasi Binary 思維題
- 題解:CF1256D Binary String Minimizing
- 2020年前端面試題(10題)前端面試題
- CppCon 2019 | Back to Basics: RAII and The Rule of ZeroAI