對非同步的學習,我們先從Future開始,學習非同步的實現原理。等理解了非同步是怎麼實現的後,再學習Rust非同步程式設計涉及的2個庫(futures、tokio)的時候就容易理解多了。
Future
rust中Future
的定義如下,一個Future
可以理解為一段供將來排程執行的程式碼。我們為什麼需要非同步呢,非同步相比同步高效在哪裡呢?就是非同步環境下,當前呼叫就緒時則執行,沒有就緒時則不等待任務就緒,而是返回一個Future
,等待將來任務就緒時再排程執行。當然,這裡返回Future
時關鍵的是要宣告事件什麼時候就緒,就緒後怎麼喚醒這個任務到排程器去排程執行。
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[lang = "future_trait"]
pub trait Future { // A future represents an asynchronous computation.
type Output;
/* The core method of future, poll, attempts to resolve the future into a final value. This method does not block if the value is not ready. Instead, the current task is scheduled to be woken up when it's possible to make further progress by polling again. */
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output>;
}
可以看到執行後的返回結果,一個是就緒返回執行結果,另一個是未就緒待定。
#[must_use = "this `Poll` may be a `Pending` variant, which should be handled"]
pub enum Poll<T> {
Ready(T),
Pending,
}
可能到這裡你還是雲裡霧裡,我們寫一段程式碼,幫助你理解。完整程式碼見:future_study
use futures;
use std::{future::Future, pin::Pin, sync::{Arc, Mutex}, task::{Context, Poll, Waker}, thread, time::Duration};
fn main() {
// 我們現在還沒有實現排程器,所以要用一下futues庫裡的一個排程器。
futures::executor::block_on(TimerFuture::new(Duration::new(10, 0)));
}
struct SharedState {
completed: bool,
waker: Option<Waker>,
}
// 我們想要實現一個定時器Future
pub struct TimerFuture {
share_state: Arc<Mutex<SharedState>>,
}
// impl Future trait for TimerFuture.
impl Future for TimerFuture {
type Output = ();
// executor will run this poll ,and Context is to tell future how to wakeup the task.
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut share_state = self.share_state.lock().unwrap();
if share_state.completed {
println!("future ready. execute poll to return.");
Poll::Ready(())
} else {
println!("future not ready, tell the future task how to wakeup to executor");
// 你要告訴future,當事件就緒後怎麼喚醒任務去排程執行,而這個waker根具體的排程器有關
// 排程器執行的時候會將上下文資訊傳進來,裡面最重要的一項就是Waker
share_state.waker = Some(cx.waker().clone());
Poll::Pending
}
}
}
impl TimerFuture {
pub fn new(duration: Duration) -> Self {
let share_state = Arc::new(Mutex::new(SharedState{completed:false, waker:None}));
let thread_shared_state = share_state.clone();
thread::spawn(move || {
thread::sleep(duration);
let mut share_state = thread_shared_state.lock().unwrap();
share_state.completed = true;
if let Some(waker) = share_state.waker.take() {
println!("detect future is ready, wakeup the future task to executor.");
waker.wake() // wakeup the future task to executor.
}
});
TimerFuture {share_state}
}
}
執行結果如下:
future not ready, tell the future task how to wakeup to executor
detect future is ready, wakeup the future task to executor.
future ready. execute poll to return.
可以看到,剛開始的時候,定時10s事件還未完成,處在Pending
狀態,這時要告訴這個任務後面就緒後怎麼喚醒去排程執行。等10s後,定時事件完成了,通過前面的設定的Waker
,喚醒這個Future
任務去排程執行。這裡,我們看一下Context
和Waker
是怎麼定義的:
/// The `Context` of an asynchronous task.
///
/// Currently, `Context` only serves to provide access to a `&Waker`
/// which can be used to wake the current task.
#[stable(feature = "futures_api", since = "1.36.0")]
pub struct Context<'a> {
waker: &'a Waker,
// Ensure we future-proof against variance changes by forcing
// the lifetime to be invariant (argument-position lifetimes
// are contravariant while return-position lifetimes are
// covariant).
_marker: PhantomData<fn(&'a ()) -> &'a ()>,
}
// A Waker is a handle for waking up a task by notifying its executor that it is ready to be run.
#[repr(transparent)]
#[stable(feature = "futures_api", since = "1.36.0")]
pub struct Waker {
waker: RawWaker,
}
現在你應該對Future
有新的理解了,上面的程式碼,我們並沒有實現排程器,而是使用的futures
庫中提供的一個排程器去執行,下面自己實現一個排程器,看一下它的原理。而在Rust中,真正要用的話,還是要學習tokio
庫,這裡我們只是為了講述一下實現原理,以便於理解非同步是怎麼一回事。完整程式碼見:future_study, 關鍵程式碼如下:
use std::{future::Future, pin::Pin, sync::{Arc, Mutex}, task::{Context, Poll, Waker}, thread, time::Duration};
use std::sync::mpsc::{sync_channel, SyncSender, Receiver};
use futures::{future::{FutureExt, BoxFuture}, task::{ArcWake, waker_ref}};
use super::timefuture::*;
pub fn run_executor() {
let (executor, spawner) = new_executor_and_spawner();
// 將Future封裝成一個任務,分發到排程器去執行
spawner.spawn( async {
let v = TimerFuture::new(Duration::new(10, 0)).await;
println!("return value: {}", v);
v
});
drop(spawner);
executor.run();
}
fn new_executor_and_spawner() -> (Executor, Spawner) {
const MAX_QUEUE_TASKS: usize = 10_000;
let (task_sender, ready_queue) = sync_channel(MAX_QUEUE_TASKS);
(Executor{ready_queue}, Spawner{task_sender})
}
// executor , received ready task to execute.
struct Executor {
ready_queue: Receiver<Arc<Task>>,
}
impl Executor {
// 實際執行具體的Future任務,不斷的接收Future task執行。
fn run(&self) {
let mut count = 0;
while let Ok(task) = self.ready_queue.recv() {
count = count + 1;
println!("received task. {}", count);
let mut future_slot = task.future.lock().unwrap();
if let Some(mut future) = future_slot.take() {
let waker = waker_ref(&task);
let context = &mut Context::from_waker(&*waker);
if let Poll::Pending = future.as_mut().poll(context) {
*future_slot = Some(future);
println!("executor run the future task, but is not ready, create a future again.");
} else {
println!("executor run the future task, is ready. the future task is done.");
}
}
}
}
}
// 負責將一個Future封裝成一個Task,分發到排程器去執行。
#[derive(Clone)]
struct Spawner {
task_sender: SyncSender<Arc<Task>>,
}
impl Spawner {
// encapsul a future object to task , wakeup to executor.
fn spawn(&self, future: impl Future<Output = String> + 'static + Send) {
let future = future.boxed();
let task = Arc::new(Task {
future: Mutex::new(Some(future)),
task_sender: self.task_sender.clone(),
});
println!("first dispatch the future task to executor.");
self.task_sender.send(task).expect("too many tasks queued.");
}
}
// 等待排程執行的Future任務,這個任務必須要實現ArcWake,表明怎麼去喚醒任務去排程執行。
struct Task {
future: Mutex<Option<BoxFuture<'static, String>>>,
task_sender: SyncSender<Arc<Task>>,
}
impl ArcWake for Task {
// A way of waking up a specific task.
fn wake_by_ref(arc_self: &Arc<Self>) {
let clone = arc_self.clone();
arc_self.task_sender.send(clone).expect("too many tasks queued");
}
}
執行結果如下:
first dispatch the future task to executor.
received task. 1
future not ready, tell the future task how to wakeup to executor
executor run the future task, but is not ready, create a future again.
detect future is ready, wakeup the future task to executor.
received task. 2
future ready. execute poll to return.
return value: timer done.
executor run the future task, is ready. the future task is done.
第一次排程的時候,因為還沒有就緒,在Pending狀態,告訴這個任務,後面就緒是怎麼喚醒該任務。然後當事件就緒的時候,因為前面告訴瞭如何喚醒,按方法喚醒了該任務去排程執行。其實,在實際應用場景中,難的地方還在於,你怎麼知道什麼時候事件就緒,去喚醒任務,我們很容易聯想到Linux系統的epoll,tokio等底層,也是基於epoll實現的。通過epoll,我們就能方便的知道事件什麼時候就緒了。
參考資料
主要學習資料如下:
上面的文章主要是學習非同步的實現原理,理解非同步是怎麼實現的,而進行Rust非同步程式設計時的具體實現,則主要依賴下面2個庫:
學習這兩個庫的時候,一定要注意版本問題,這兩個庫最近變化的比較快,一定要學最新的。