擁有無數個智慧攝像頭,卻還沒讓城市睜開雙眼

naojiti發表於2019-01-24

智慧攝像頭之於智慧城市,已經成了一項必然的存在。彷彿城市裡要是沒有三五千個智慧攝像頭、張學友演唱會上沒抓到過逃犯,整個城市在智慧化進度上就矮人一截一樣。

從全球範圍來看,通過智慧攝像頭觀測城市執行狀況已經成為了讓AI進入城市管理最好的視窗。

但不管利用哪種技術,城市的智慧化永遠不可能是一蹴而就的。就拿如今最普及的智慧攝像頭來說,當我們在城市的每個角落都塞滿智慧攝像頭之後,下一步應該做些什麼?

今天抓逃犯,明天惹人煩

在討論這個問題之前,我們需要再熟悉一下關於我們城市中智慧攝像頭的幾個事實。

首先我們要知道,由於中國智慧城市發展的勢頭較為迅猛,政府不同部門主導和企業主導的情況並存。所以很可能一個城市中交通攝像頭和安防攝像頭的廠商不是同一家,而企業又在自己的園區內安裝了其他廠商的智慧攝像頭。

而且不同用途的智慧攝像頭所實現的能力也不同。例如有些在交通道路上的智慧攝像頭只有利用OCR識別車牌的能力,而有些安防攝像頭則只能識別人臉。甚至現在有一些城市在高架橋等基礎設施上也應用上了智慧攝像頭,用來觀測基礎設施的磨損情況。

尤其是智慧攝像頭還是一種正在不斷成長的產品,其技術本身更新換代的速度很快,5G、終端計算晶片、模型壓縮演算法等外圍技術同樣會對智慧攝像頭產生影響。可能今天剛剛全市換上應用雲邊一體計算的智慧攝像頭,明天就會因為5G提升了傳輸速度,又讓雲端處理變成了主流。

所以如今我們看似完善的智慧攝像頭如果想要真正在智慧城市中發揮出長效作用,還可能會遇到以下的問題:

·智慧攝像頭承擔任務的變化

城市永遠是在變化中發展的,比如某一片區在建設初期時攝像頭需要承擔的任務是對渣土車的監控,等到建設完成居民入住後,則要注重對小攤小販佔道的監控。當這種需求變化發生時,是更換攝像頭硬體還是更新軟體?誰來進行這方面的決策?

··雲邊計算資源的分配

從目前的技術趨向看來,未來硬體端必然是雲端計算與邊緣計算相結合的。從城市智慧攝像頭的用途來看,邊緣計算用來處理安防、災害這些緊急事故,雲端計算用來處理違章違規這類非緊急事務,似乎是一個合理的解決方案。可“緊急”與“非緊急”之間的界限究竟該如何界定,社群、園區內非政府部門安置的攝像頭,是否也應該被劃歸與同樣的解決方案之內?

·資訊的更新與同步

同時當未來智慧攝像頭在安防上涉足越來越深入,未來必然會出現跨省市的資訊同步情況。例如將一張照片同步到全國的安防攝像頭系統中。這時如何高效處理跨部門、跨裝置的資訊同步問題,就變得異常重要。

所以,別看現在的智慧攝像頭很方便,未來可能反而會帶來一些意想不到的煩惱。能夠明晰規劃,進行體系化、組織化的處理,讓一個個攝像頭變成統一的“城市視覺”,才能在未來讓智慧攝像頭更好地參與智慧城市。

想讓城市睜開雙眼,數字視網膜可行嗎?

但尷尬的是,這一問題如今在世界範圍內都還沒見到可參考的方案。

原因是其他在智慧城市上成就較高的國家,要麼像新加坡那樣國土面積小、人口少,並沒有面對著我們所面對的複雜問題。要麼像美國聖荷西或哥倫布市那樣,由單一市政部門負責從零開始牽頭建設智慧城市,在攝像頭這樣裝置採購上更加單一簡單。

加之我們在智慧城市上本身就走得更靠前,這些問題恐怕還要依靠中國智慧來解決。

目前被提及最多的智慧城市視覺平臺解決方案,是我們非常熟悉的高文院士提出的“智慧城市數字視網膜”。

這一方案的大意是在攝像頭終端將用來儲存和離線觀看的視訊編碼以及為了識別和理解的特徵編碼分開處理,再分別上傳到雲端的視訊解碼器和特徵解碼器。再利用深度學習優化視訊特徵模型,儘可能提升計算效率。最後利用視訊和特徵的聯合優化,實現碼流的最優分配。

也就是說,在實際應用時攝像頭會一邊錄影一邊利用高效深度學習框架從中識別出需要識別人、車、物,在轉碼時則在識別率和解析度中尋找平衡,據說可以在不犧牲編碼的前提下將識別率提升10%-40%。

從技術解決方案來看,這種在轉碼壓縮前就進行特徵識別模式的確可能讓視訊的智慧化分析變得更加高效,而能量密度極高的智慧化分析則意味可以改變智慧攝像頭如今分工過細的現狀,讓攝像頭同時承擔人臉、OCR、物體等等多種工作。同時識別模型的更新也能通過軟體部署的方式實現。

更秀的是,這一套系統可以被整合在GPU或FPGA晶片上,將晶片安置於普通智慧攝像頭中就可以完成升級。

從理論上來講數字視網膜是一種適配性很強的解決方案,很適合我國這種智慧城市模式四處開花的情況。不過目前數字視網膜仍處於試點狀況,晶片模式的硬體部署方式成本如何、與終端配套的視訊大腦如何部署,都是有待解決的問題。

所以我們很難說數字視網膜就是智慧城市攝像頭體系最終的解決方案,但人們對相關問題的投入和關注已經成為不可迴避的事實。

即將到來的城市視覺,為智慧攝像頭帶來了哪些新可能?

那麼當智慧城市對智慧攝像頭統一部署和管理需求越來越高時,未來的智慧攝像頭產業可能發生什麼呢?在這裡我們可以進行一些“不負責任”的猜測。

或許,我們會出現統一的城市視覺系統,並要求所有廠商為這一系統“開後門”。

城市視覺系統可以與警務系統關聯,隨時收錄例如嫌疑犯、嫌疑車輛資料資訊,與所有廠商的裝置進行同步。並且在“後門”中與市政系統進行聯網,在發現嫌疑資訊中自動上傳警報。這樣一來不管是哪個政府部門或是私人部署的智慧攝像頭,都可以保證完成最基礎的任務。

另外可能發生的是,當越來越多人意識到當前技術能力的巨大波動,未來或許會出現很多模組化的智慧攝像頭。

其實在“數字視網膜”的解決模式中,就已經出現了晶片和本體區別看待的跡象。現在一些創業公司也提出了模組化智慧攝像頭解決方案,使用者可以根據不同用途、不同需求來分別購置攝像頭、晶片和儲存裝置。假如當未來邊緣計算成為主流解決方案,只需要給攝像頭統一更換晶片就可以解決問題。

再有就是,打造系統和平臺的能力對於智慧攝像頭廠商來說將越來越重要。

當人們意識到智慧城市對於智慧攝像頭的動態化需求時,未來將越來越看重智慧攝像頭的軟體能力:平臺是否簡單好用、能夠敏捷更新識別需求、能否與其他IoT裝置相連線……這些軟體上的體驗細節將成為巨大的加分項。

總之對於智慧城市來說,擁有了智慧攝像頭只是GAME START的第一步。如今能抓逃犯和抓違章的攝像頭只是冰山一隅,當這些攝像頭形成城市的視覺體系時,真正的智慧才會開始甦醒。

來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/31561483/viewspace-2564705/,如需轉載,請註明出處,否則將追究法律責任。

相關文章