第二章 :查詢與排序-------2.13_三種典型遞迴形式演算法的效能分析

Curtis_發表於2019-03-06

三種典型遞迴形式演算法的效能分析:

1、求n的階乘:

int f(int n){
	if(n==1){
		return 1;
	}
	return n*f(n-1);
} 

①、子問題的規模下降

②、處理子問題消耗的時間

寫出下式:

T(n)=T(n-1)+O(1)

得出:求階乘的時間複雜度: N個O(1)=>  O(N)。

2、列印i到j:

void print(int i,int j){
	if(i>j) return;
	cout<<i<<" ";
	print(i+1,j);
} 

T=O(j-i) => O(n)

3、求和:

O(n)

4、翻轉字串:

O(n)

5、斐波那契:

T(n)=T(n-1)+T(n-2)+O(1)=2T(n-1)+O(1)   ->  若是3,則3^n

故時間複雜度: T(2^n) 。

6、最大公約數:

m>n, m%n<m/2;

n每兩次,折半。  => 2lg(n)

                /* 削減1/3    =>   2log3(n)

故時間複雜度: O(lg(n))

 

相關文章