初次接觸機器學習的朋友們,建議先把這篇概念性的科普文章,精讀5遍以上:神經網路淺講:從神經元到深度學習
下列程式碼來自 https://zh.gluon.ai/chapter_supervised-learning/linear-regression-scratch.html
裡面有大量的矩陣向量的操作,不熟悉NDArray的,建議先看上一篇mxnet安裝及NDArray初體驗
下面這個示例的思路,先講解一下,不然不知道它們在幹嘛:)
先給出一個線性方程(1),如下圖:
利用這個方程生成一堆資料集,然後再建立一個線性迴歸模型(2),如下圖:
等價於下面這樣:
(注:上圖中的b1 , b2 ... 其實相同)
再利用隨機梯度下降法,進行迭代運算,計算預測值yhat,直到下面的損失函式
不斷減小(即:收斂),然後看看這時得到的引數w(是一個向星)以及偏置值b是否跟線性方程中設定的引數[2, -3.4]以及4.2相同,如果很接近,說明我們用深度學習演算法,基於一堆資料成功預測出了想要的結果(即:線性迴歸成功),這種已知答案,利用一堆資料進行訓練的學習方法,也稱為有監督學習。
1 from mxnet import ndarray as nd 2 from mxnet import autograd 3 import random 4 5 num_inputs = 2 6 num_examples = 1000 7 8 true_w = [2, -3.4] 9 true_b = 4.2 10 11 X = nd.random_normal(shape=(num_examples, num_inputs)) #1000行,2列的資料集 12 y = true_w[0] * X[:, 0] + true_w[1] * X[:, 1] + true_b #已知答案的結果 13 y += .01 * nd.random_normal(shape=y.shape) #加入噪音 14 15 batch_size = 10 16 def data_iter(): 17 #產生一個隨機索引列表 18 idx = list(range(num_examples)) 19 random.shuffle(idx) 20 for i in range(0, num_examples, batch_size): 21 j = nd.array(idx[i:min(i+batch_size,num_examples)]) 22 yield nd.take(X, j), nd.take(y, j) #每次隨機從X中取出10行資料,以及對應的結果y值 23 24 #初始化模型引數(即:需要求解的引數變數) 25 w = nd.random_normal(shape=(num_inputs, 1)) 26 b = nd.zeros((1,)) 27 params = [w, b] 28 29 #建立梯度 30 for param in params: 31 param.attach_grad() 32 33 #定義線性迴歸模型 34 def net(X): 35 return nd.dot(X, w) + b 36 37 #定義損失函式 38 def square_loss(yhat, y): 39 # 注意這裡我們把y變形成yhat的形狀來避免自動廣播 40 return (yhat - y.reshape(yhat.shape)) ** 2 41 42 #隨機梯度下降法 43 def SGD(params, lr): 44 for param in params: 45 param[:] = param - lr * param.grad 46 47 48 #訓練 49 epochs = 5 50 learning_rate = .001 51 for e in range(epochs): 52 total_loss = 0 53 for data, label in data_iter(): 54 with autograd.record(): 55 output = net(data) 56 loss = square_loss(output, label) 57 loss.backward() 58 SGD(params, learning_rate) 59 60 total_loss += nd.sum(loss).asscalar() 61 print("Epoch %d, average loss: %f" % (e, total_loss/num_examples)) 62 63 print(true_w) #列印答案 64 print(w) #列印求解結果 65 66 print(true_b) #列印答案 67 print(b) #列印求解結果
Epoch 0, average loss: 6.012281 Epoch 1, average loss: 0.102830 Epoch 2, average loss: 0.001909 Epoch 3, average loss: 0.000133 Epoch 4, average loss: 0.000101 #5次迭代後,已經快速收斂 [2, -3.4] #已知答案 [[ 2.00017834] #求解結果 [-3.40006614]] <NDArray 2x1 @cpu(0)> 4.2 [ 4.19863892] <NDArray 1 @cpu(0)>