以太坊原始碼分析(34)eth-downloader原始碼分析
downloader主要負責區塊鏈最開始的同步工作,當前的同步有兩種模式,一種是傳統的fullmode,這種模式通過下載區塊頭,和區塊體來構建區塊鏈,同步的過程就和普通的區塊插入的過程一樣,包括區塊頭的驗證,交易的驗證,交易執行,賬戶狀態的改變等操作,這其實是一個比較消耗CPU和磁碟的一個過程。 另一種模式就是 快速同步的fast sync模式, 這種模式有專門的文件來描述。請參考fast sync的文件。簡單的說 fast sync的模式會下載區塊頭,區塊體和收據, 插入的過程不會執行交易,然後在一個區塊高度(最高的區塊高度 - 1024)的時候同步所有的賬戶狀態,後面的1024個區塊會採用fullmode的方式來構建。 這種模式會加區塊的插入時間,同時不會產生大量的歷史的賬戶資訊。會相對節約磁碟, 但是對於網路的消耗會更高。 因為需要下載收據和狀態。
## downloader 資料結構
type Downloader struct {
mode SyncMode // Synchronisation mode defining the strategy used (per sync cycle)
mux *event.TypeMux // Event multiplexer to announce sync operation events
// queue 物件用來排程 區塊頭,交易,和收據的下載,以及下載完之後的組裝
queue *queue // Scheduler for selecting the hashes to download
// 對端的集合
peers *peerSet // Set of active peers from which download can proceed
stateDB ethdb.Database
// fast sync 中的 Pivot point區塊的頭
fsPivotLock *types.Header // Pivot header on critical section entry (cannot change between retries)
fsPivotFails uint32 // Number of subsequent fast sync failures in the critical section
// 下載的往返時延
rttEstimate uint64 // Round trip time to target for download requests
rttConfidence uint64 // Confidence in the estimated RTT (unit: millionths to allow atomic ops) 估計RTT的信心(單位:允許原子操作的百萬分之一)
// Statistics 統計資訊,
syncStatsChainOrigin uint64 // Origin block number where syncing started at
syncStatsChainHeight uint64 // Highest block number known when syncing started
syncStatsState stateSyncStats
syncStatsLock sync.RWMutex // Lock protecting the sync stats fields
lightchain LightChain
blockchain BlockChain
// Callbacks
dropPeer peerDropFn // Drops a peer for misbehaving
// Status
synchroniseMock func(id string, hash common.Hash) error // Replacement for synchronise during testing
synchronising int32
notified int32
// Channels
headerCh chan dataPack // [eth/62] Channel receiving inbound block headers header的輸入通道,從網路下載的header會被送到這個通道
bodyCh chan dataPack // [eth/62] Channel receiving inbound block bodies bodies的輸入通道,從網路下載的bodies會被送到這個通道
receiptCh chan dataPack // [eth/63] Channel receiving inbound receipts receipts的輸入通道,從網路下載的receipts會被送到這個通道
bodyWakeCh chan bool // [eth/62] Channel to signal the block body fetcher of new tasks 用來傳輸body fetcher新任務的通道
receiptWakeCh chan bool // [eth/63] Channel to signal the receipt fetcher of new tasks 用來傳輸receipt fetcher 新任務的通道
headerProcCh chan []*types.Header // [eth/62] Channel to feed the header processor new tasks 通道為header處理者提供新的任務
// for stateFetcher
stateSyncStart chan *stateSync //用來啟動新的 state fetcher
trackStateReq chan *stateReq // TODO
stateCh chan dataPack // [eth/63] Channel receiving inbound node state data state的輸入通道,從網路下載的state會被送到這個通道
// Cancellation and termination
cancelPeer string // Identifier of the peer currently being used as the master (cancel on drop)
cancelCh chan struct{} // Channel to cancel mid-flight syncs
cancelLock sync.RWMutex // Lock to protect the cancel channel and peer in delivers
quitCh chan struct{} // Quit channel to signal termination
quitLock sync.RWMutex // Lock to prevent double closes
// Testing hooks
syncInitHook func(uint64, uint64) // Method to call upon initiating a new sync run
bodyFetchHook func([]*types.Header) // Method to call upon starting a block body fetch
receiptFetchHook func([]*types.Header) // Method to call upon starting a receipt fetch
chainInsertHook func([]*fetchResult) // Method to call upon inserting a chain of blocks (possibly in multiple invocations)
}
構造方法
// New creates a new downloader to fetch hashes and blocks from remote peers.
func New(mode SyncMode, stateDb ethdb.Database, mux *event.TypeMux, chain BlockChain, lightchain LightChain, dropPeer peerDropFn) *Downloader {
if lightchain == nil {
lightchain = chain
}
dl := &Downloader{
mode: mode,
stateDB: stateDb,
mux: mux,
queue: newQueue(),
peers: newPeerSet(),
rttEstimate: uint64(rttMaxEstimate),
rttConfidence: uint64(1000000),
blockchain: chain,
lightchain: lightchain,
dropPeer: dropPeer,
headerCh: make(chan dataPack, 1),
bodyCh: make(chan dataPack, 1),
receiptCh: make(chan dataPack, 1),
bodyWakeCh: make(chan bool, 1),
receiptWakeCh: make(chan bool, 1),
headerProcCh: make(chan []*types.Header, 1),
quitCh: make(chan struct{}),
stateCh: make(chan dataPack),
stateSyncStart: make(chan *stateSync),
trackStateReq: make(chan *stateReq),
}
go dl.qosTuner() //簡單 主要用來計算rttEstimate和rttConfidence
go dl.stateFetcher() //啟動stateFetcher的任務監聽,但是這個時候還沒有生成state fetcher的任務。
return dl
}
## 同步下載
Synchronise試圖和一個peer來同步,如果同步過程中遇到一些錯誤,那麼會刪除掉Peer。然後會被重試。
// Synchronise tries to sync up our local block chain with a remote peer, both
// adding various sanity checks as well as wrapping it with various log entries.
func (d *Downloader) Synchronise(id string, head common.Hash, td *big.Int, mode SyncMode) error {
err := d.synchronise(id, head, td, mode)
switch err {
case nil:
case errBusy:
case errTimeout, errBadPeer, errStallingPeer,
errEmptyHeaderSet, errPeersUnavailable, errTooOld,
errInvalidAncestor, errInvalidChain:
log.Warn("Synchronisation failed, dropping peer", "peer", id, "err", err)
d.dropPeer(id)
default:
log.Warn("Synchronisation failed, retrying", "err", err)
}
return err
}
synchronise
// synchronise will select the peer and use it for synchronising. If an empty string is given
// it will use the best peer possible and synchronize if it's TD is higher than our own. If any of the
// checks fail an error will be returned. This method is synchronous
func (d *Downloader) synchronise(id string, hash common.Hash, td *big.Int, mode SyncMode) error {
// Mock out the synchronisation if testing
if d.synchroniseMock != nil {
return d.synchroniseMock(id, hash)
}
// Make sure only one goroutine is ever allowed past this point at once
// 這個方法同時只能執行一個, 檢查是否正在執行。
if !atomic.CompareAndSwapInt32(&d.synchronising, 0, 1) {
return errBusy
}
defer atomic.StoreInt32(&d.synchronising, 0)
// Post a user notification of the sync (only once per session)
if atomic.CompareAndSwapInt32(&d.notified, 0, 1) {
log.Info("Block synchronisation started")
}
// Reset the queue, peer set and wake channels to clean any internal leftover state
// 重置queue和peer的狀態。
d.queue.Reset()
d.peers.Reset()
// 清空d.bodyWakeCh, d.receiptWakeCh
for _, ch := range []chan bool{d.bodyWakeCh, d.receiptWakeCh} {
select {
case <-ch:
default:
}
}
// 清空d.headerCh, d.bodyCh, d.receiptCh
for _, ch := range []chan dataPack{d.headerCh, d.bodyCh, d.receiptCh} {
for empty := false; !empty; {
select {
case <-ch:
default:
empty = true
}
}
}
// 清空headerProcCh
for empty := false; !empty; {
select {
case <-d.headerProcCh:
default:
empty = true
}
}
// Create cancel channel for aborting mid-flight and mark the master peer
d.cancelLock.Lock()
d.cancelCh = make(chan struct{})
d.cancelPeer = id
d.cancelLock.Unlock()
defer d.Cancel() // No matter what, we can't leave the cancel channel open
// Set the requested sync mode, unless it's forbidden
d.mode = mode
if d.mode == FastSync && atomic.LoadUint32(&d.fsPivotFails) >= fsCriticalTrials {
d.mode = FullSync
}
// Retrieve the origin peer and initiate the downloading process
p := d.peers.Peer(id)
if p == nil {
return errUnknownPeer
}
return d.syncWithPeer(p, hash, td)
}
syncWithPeer
// syncWithPeer starts a block synchronization based on the hash chain from the
// specified peer and head hash.
func (d *Downloader) syncWithPeer(p *peerConnection, hash common.Hash, td *big.Int) (err error) {
...
// Look up the sync boundaries: the common ancestor and the target block
// 使用hash指來獲取區塊頭,這個方法裡面會訪問網路
latest, err := d.fetchHeight(p)
if err != nil {
return err
}
height := latest.Number.Uint64()
// findAncestor試圖來獲取大家共同的祖先,以便找到一個開始同步的點。
origin, err := d.findAncestor(p, height)
if err != nil {
return err
}
d.syncStatsLock.Lock()
if d.syncStatsChainHeight <= origin || d.syncStatsChainOrigin > origin {
d.syncStatsChainOrigin = origin
}
d.syncStatsChainHeight = height
d.syncStatsLock.Unlock()
// Initiate the sync using a concurrent header and content retrieval algorithm
pivot := uint64(0)
switch d.mode {
case LightSync:
pivot = height
case FastSync:
// Calculate the new fast/slow sync pivot point
// 如果pivot這個點沒有被鎖定。
if d.fsPivotLock == nil {
pivotOffset, err := rand.Int(rand.Reader, big.NewInt(int64(fsPivotInterval)))
if err != nil {
panic(fmt.Sprintf("Failed to access crypto random source: %v", err))
}
if height > uint64(fsMinFullBlocks)+pivotOffset.Uint64() {
pivot = height - uint64(fsMinFullBlocks) - pivotOffset.Uint64()
}
} else { // 如過這個點已經被鎖定了。那麼就使用這個點
// Pivot point locked in, use this and do not pick a new one!
pivot = d.fsPivotLock.Number.Uint64()
}
// If the point is below the origin, move origin back to ensure state download
if pivot < origin {
if pivot > 0 {
origin = pivot - 1
} else {
origin = 0
}
}
log.Debug("Fast syncing until pivot block", "pivot", pivot)
}
d.queue.Prepare(origin+1, d.mode, pivot, latest)
if d.syncInitHook != nil {
d.syncInitHook(origin, height)
}
// 啟動幾個fetcher 分別負責header,bodies,receipts,處理headers
fetchers := []func() error{
func() error { return d.fetchHeaders(p, origin+1) }, // Headers are always retrieved
func() error { return d.fetchBodies(origin + 1) }, // Bodies are retrieved during normal and fast sync
func() error { return d.fetchReceipts(origin + 1) }, // Receipts are retrieved during fast sync
func() error { return d.processHeaders(origin+1, td) },
}
if d.mode == FastSync { //根據模式的不同,增加新的處理邏輯
fetchers = append(fetchers, func() error { return d.processFastSyncContent(latest) })
} else if d.mode == FullSync {
fetchers = append(fetchers, d.processFullSyncContent)
}
err = d.spawnSync(fetchers)
if err != nil && d.mode == FastSync && d.fsPivotLock != nil {
// If sync failed in the critical section, bump the fail counter.
atomic.AddUint32(&d.fsPivotFails, 1)
}
return err
}
spawnSync給每個fetcher啟動一個goroutine, 然後阻塞的等待fetcher出錯。
// spawnSync runs d.process and all given fetcher functions to completion in
// separate goroutines, returning the first error that appears.
func (d *Downloader) spawnSync(fetchers []func() error) error {
var wg sync.WaitGroup
errc := make(chan error, len(fetchers))
wg.Add(len(fetchers))
for _, fn := range fetchers {
fn := fn
go func() { defer wg.Done(); errc <- fn() }()
}
// Wait for the first error, then terminate the others.
var err error
for i := 0; i < len(fetchers); i++ {
if i == len(fetchers)-1 {
// Close the queue when all fetchers have exited.
// This will cause the block processor to end when
// it has processed the queue.
d.queue.Close()
}
if err = <-errc; err != nil {
break
}
}
d.queue.Close()
d.Cancel()
wg.Wait()
return err
}
## headers的處理
fetchHeaders方法用來獲取header。 然後根據獲取的header去獲取body和receipt等資訊。
// fetchHeaders keeps retrieving headers concurrently from the number
// requested, until no more are returned, potentially throttling on the way. To
// facilitate concurrency but still protect against malicious nodes sending bad
// headers, we construct a header chain skeleton using the "origin" peer we are
// syncing with, and fill in the missing headers using anyone else. Headers from
// other peers are only accepted if they map cleanly to the skeleton. If no one
// can fill in the skeleton - not even the origin peer - it's assumed invalid and
// the origin is dropped.
fetchHeaders不斷的重複這樣的操作,傳送header請求,等待所有的返回。直到完成所有的header請求。 為了提高併發性,同時仍然能夠防止惡意節點傳送錯誤的header,我們使用我們正在同步的“origin”peer構造一個標頭檔案鏈骨架,並使用其他人填充缺失的header。 其他peer的header只有在乾淨地對映到骨架上時才被接受。 如果沒有人能夠填充骨架 - 甚至origin peer也不能填充 - 它被認為是無效的,並且origin peer也被丟棄。
func (d *Downloader) fetchHeaders(p *peerConnection, from uint64) error {
p.log.Debug("Directing header downloads", "origin", from)
defer p.log.Debug("Header download terminated")
// Create a timeout timer, and the associated header fetcher
skeleton := true // Skeleton assembly phase or finishing up
request := time.Now() // time of the last skeleton fetch request
timeout := time.NewTimer(0) // timer to dump a non-responsive active peer
<-timeout.C // timeout channel should be initially empty
defer timeout.Stop()
var ttl time.Duration
getHeaders := func(from uint64) {
request = time.Now()
ttl = d.requestTTL()
timeout.Reset(ttl)
if skeleton { //填充骨架
p.log.Trace("Fetching skeleton headers", "count", MaxHeaderFetch, "from", from)
go p.peer.RequestHeadersByNumber(from+uint64(MaxHeaderFetch)-1, MaxSkeletonSize, MaxHeaderFetch-1, false)
} else { // 直接請求
p.log.Trace("Fetching full headers", "count", MaxHeaderFetch, "from", from)
go p.peer.RequestHeadersByNumber(from, MaxHeaderFetch, 0, false)
}
}
// Start pulling the header chain skeleton until all is done
getHeaders(from)
for {
select {
case <-d.cancelCh:
return errCancelHeaderFetch
case packet := <-d.headerCh: //網路上返回的header會投遞到headerCh這個通道
// Make sure the active peer is giving us the skeleton headers
if packet.PeerId() != p.id {
log.Debug("Received skeleton from incorrect peer", "peer", packet.PeerId())
break
}
headerReqTimer.UpdateSince(request)
timeout.Stop()
// If the skeleton's finished, pull any remaining head headers directly from the origin
if packet.Items() == 0 && skeleton {
skeleton = false
getHeaders(from)
continue
}
// If no more headers are inbound, notify the content fetchers and return
// 如果沒有更多的返回了。 那麼告訴headerProcCh通道
if packet.Items() == 0 {
p.log.Debug("No more headers available")
select {
case d.headerProcCh <- nil:
return nil
case <-d.cancelCh:
return errCancelHeaderFetch
}
}
headers := packet.(*headerPack).headers
// If we received a skeleton batch, resolve internals concurrently
if skeleton { // 如果是需要填充骨架,那麼在這個方法裡面填充好
filled, proced, err := d.fillHeaderSkeleton(from, headers)
if err != nil {
p.log.Debug("Skeleton chain invalid", "err", err)
return errInvalidChain
}
headers = filled[proced:]
// proced代表已經處理完了多少個了。 所以只需要proced:後面的headers了
from += uint64(proced)
}
// Insert all the new headers and fetch the next batch
if len(headers) > 0 {
p.log.Trace("Scheduling new headers", "count", len(headers), "from", from)
//投遞到headerProcCh 然後繼續迴圈。
select {
case d.headerProcCh <- headers:
case <-d.cancelCh:
return errCancelHeaderFetch
}
from += uint64(len(headers))
}
getHeaders(from)
case <-timeout.C:
// Header retrieval timed out, consider the peer bad and drop
p.log.Debug("Header request timed out", "elapsed", ttl)
headerTimeoutMeter.Mark(1)
d.dropPeer(p.id)
// Finish the sync gracefully instead of dumping the gathered data though
for _, ch := range []chan bool{d.bodyWakeCh, d.receiptWakeCh} {
select {
case ch <- false:
case <-d.cancelCh:
}
}
select {
case d.headerProcCh <- nil:
case <-d.cancelCh:
}
return errBadPeer
}
}
}
processHeaders方法,這個方法從headerProcCh通道來獲取header。並把獲取到的header丟入到queue來進行排程,這樣body fetcher或者是receipt fetcher就可以領取到fetch任務。
// processHeaders takes batches of retrieved headers from an input channel and
// keeps processing and scheduling them into the header chain and downloader's
// queue until the stream ends or a failure occurs.
// processHeaders批量的獲取headers, 處理他們,並通過downloader的queue物件來排程他們。 直到錯誤發生或者處理結束。
func (d *Downloader) processHeaders(origin uint64, td *big.Int) error {
// Calculate the pivoting point for switching from fast to slow sync
pivot := d.queue.FastSyncPivot()
// Keep a count of uncertain headers to roll back
// rollback 用來處理這種邏輯,如果某個點失敗了。那麼之前插入的2048個節點都要回滾。因為安全性達不到要求, 可以詳細參考fast sync的文件。
rollback := []*types.Header{}
defer func() { // 這個函式用來錯誤退出的時候進行回滾。 TODO
if len(rollback) > 0 {
// Flatten the headers and roll them back
hashes := make([]common.Hash, len(rollback))
for i, header := range rollback {
hashes[i] = header.Hash()
}
lastHeader, lastFastBlock, lastBlock := d.lightchain.CurrentHeader().Number, common.Big0, common.Big0
if d.mode != LightSync {
lastFastBlock = d.blockchain.CurrentFastBlock().Number()
lastBlock = d.blockchain.CurrentBlock().Number()
}
d.lightchain.Rollback(hashes)
curFastBlock, curBlock := common.Big0, common.Big0
if d.mode != LightSync {
curFastBlock = d.blockchain.CurrentFastBlock().Number()
curBlock = d.blockchain.CurrentBlock().Number()
}
log.Warn("Rolled back headers", "count", len(hashes),
"header", fmt.Sprintf("%d->%d", lastHeader, d.lightchain.CurrentHeader().Number),
"fast", fmt.Sprintf("%d->%d", lastFastBlock, curFastBlock),
"block", fmt.Sprintf("%d->%d", lastBlock, curBlock))
// If we're already past the pivot point, this could be an attack, thread carefully
if rollback[len(rollback)-1].Number.Uint64() > pivot {
// If we didn't ever fail, lock in the pivot header (must! not! change!)
if atomic.LoadUint32(&d.fsPivotFails) == 0 {
for _, header := range rollback {
if header.Number.Uint64() == pivot {
log.Warn("Fast-sync pivot locked in", "number", pivot, "hash", header.Hash())
d.fsPivotLock = header
}
}
}
}
}
}()
// Wait for batches of headers to process
gotHeaders := false
for {
select {
case <-d.cancelCh:
return errCancelHeaderProcessing
case headers := <-d.headerProcCh:
// Terminate header processing if we synced up
if len(headers) == 0 { //處理完成
// Notify everyone that headers are fully processed
for _, ch := range []chan bool{d.bodyWakeCh, d.receiptWakeCh} {
select {
case ch <- false:
case <-d.cancelCh:
}
}
// If no headers were retrieved at all, the peer violated it's TD promise that it had a
// better chain compared to ours. The only exception is if it's promised blocks were
// already imported by other means (e.g. fecher):
//
// R <remote peer>, L <local node>: Both at block 10
// R: Mine block 11, and propagate it to L
// L: Queue block 11 for import
// L: Notice that R's head and TD increased compared to ours, start sync
// L: Import of block 11 finishes
// L: Sync begins, and finds common ancestor at 11
// L: Request new headers up from 11 (R's TD was higher, it must have something)
// R: Nothing to give
if d.mode != LightSync { // 對方的TD比我們大,但是沒有獲取到任何東西。 那麼認為對方是錯誤的對方。 會斷開和對方的聯絡
if !gotHeaders && td.Cmp(d.blockchain.GetTdByHash(d.blockchain.CurrentBlock().Hash())) > 0 {
return errStallingPeer
}
}
// If fast or light syncing, ensure promised headers are indeed delivered. This is
// needed to detect scenarios where an attacker feeds a bad pivot and then bails out
// of delivering the post-pivot blocks that would flag the invalid content.
//
// This check cannot be executed "as is" for full imports, since blocks may still be
// queued for processing when the header download completes. However, as long as the
// peer gave us something useful, we're already happy/progressed (above check).
if d.mode == FastSync || d.mode == LightSync {
if td.Cmp(d.lightchain.GetTdByHash(d.lightchain.CurrentHeader().Hash())) > 0 {
return errStallingPeer
}
}
// Disable any rollback and return
rollback = nil
return nil
}
// Otherwise split the chunk of headers into batches and process them
gotHeaders = true
for len(headers) > 0 {
// Terminate if something failed in between processing chunks
select {
case <-d.cancelCh:
return errCancelHeaderProcessing
default:
}
// Select the next chunk of headers to import
limit := maxHeadersProcess
if limit > len(headers) {
limit = len(headers)
}
chunk := headers[:limit]
// In case of header only syncing, validate the chunk immediately
if d.mode == FastSync || d.mode == LightSync { //如果是快速同步模式,或者是輕量級同步模式(只下載區塊頭)
// Collect the yet unknown headers to mark them as uncertain
unknown := make([]*types.Header, 0, len(headers))
for _, header := range chunk {
if !d.lightchain.HasHeader(header.Hash(), header.Number.Uint64()) {
unknown = append(unknown, header)
}
}
// If we're importing pure headers, verify based on their recentness
// 每隔多少個區塊驗證一次
frequency := fsHeaderCheckFrequency
if chunk[len(chunk)-1].Number.Uint64()+uint64(fsHeaderForceVerify) > pivot {
frequency = 1
}
// lightchain預設是等於chain的。 插入區塊頭。如果失敗那麼需要回滾。
if n, err := d.lightchain.InsertHeaderChain(chunk, frequency); err != nil {
// If some headers were inserted, add them too to the rollback list
if n > 0 {
rollback = append(rollback, chunk[:n]...)
}
log.Debug("Invalid header encountered", "number", chunk[n].Number, "hash", chunk[n].Hash(), "err", err)
return errInvalidChain
}
// All verifications passed, store newly found uncertain headers
rollback = append(rollback, unknown...)
if len(rollback) > fsHeaderSafetyNet {
rollback = append(rollback[:0], rollback[len(rollback)-fsHeaderSafetyNet:]...)
}
}
// If we're fast syncing and just pulled in the pivot, make sure it's the one locked in
if d.mode == FastSync && d.fsPivotLock != nil && chunk[0].Number.Uint64() <= pivot && chunk[len(chunk)-1].Number.Uint64() >= pivot { //如果PivotLock,檢查一下Hash是否相同。
if pivot := chunk[int(pivot-chunk[0].Number.Uint64())]; pivot.Hash() != d.fsPivotLock.Hash() {
log.Warn("Pivot doesn't match locked in one", "remoteNumber", pivot.Number, "remoteHash", pivot.Hash(), "localNumber", d.fsPivotLock.Number, "localHash", d.fsPivotLock.Hash())
return errInvalidChain
}
}
// Unless we're doing light chains, schedule the headers for associated content retrieval
// 如果我們處理完輕量級鏈。 排程header來進行相關資料的獲取。body,receipts
if d.mode == FullSync || d.mode == FastSync {
// If we've reached the allowed number of pending headers, stall a bit
// 如果當前queue的容量容納不下了。那麼等待。
for d.queue.PendingBlocks() >= maxQueuedHeaders || d.queue.PendingReceipts() >= maxQueuedHeaders {
select {
case <-d.cancelCh:
return errCancelHeaderProcessing
case <-time.After(time.Second):
}
}
// Otherwise insert the headers for content retrieval
// 呼叫Queue進行排程,下載body和receipts
inserts := d.queue.Schedule(chunk, origin)
if len(inserts) != len(chunk) {
log.Debug("Stale headers")
return errBadPeer
}
}
headers = headers[limit:]
origin += uint64(limit)
}
// Signal the content downloaders of the availablility of new tasks
// 給通道d.bodyWakeCh, d.receiptWakeCh傳送訊息,喚醒處理執行緒。
for _, ch := range []chan bool{d.bodyWakeCh, d.receiptWakeCh} {
select {
case ch <- true:
default:
}
}
}
}
}
## bodies處理
fetchBodies函式定義了一些閉包函式,然後呼叫了fetchParts函式
// fetchBodies iteratively downloads the scheduled block bodies, taking any
// available peers, reserving a chunk of blocks for each, waiting for delivery
// and also periodically checking for timeouts.
// fetchBodies 持續的下載區塊體,中間會使用到任何可以用的連結,為每一個連結保留一部分的區塊體,等待區塊被交付,並定期的檢查是否超時。
func (d *Downloader) fetchBodies(from uint64) error {
log.Debug("Downloading block bodies", "origin", from)
var (
deliver = func(packet dataPack) (int, error) { //下載完的區塊體的交付函式
pack := packet.(*bodyPack)
return d.queue.DeliverBodies(pack.peerId, pack.transactions, pack.uncles)
}
expire = func() map[string]int { return d.queue.ExpireBodies(d.requestTTL()) } //超時
fetch = func(p *peerConnection, req *fetchRequest) error { return p.FetchBodies(req) } // fetch函式
capacity = func(p *peerConnection) int { return p.BlockCapacity(d.requestRTT()) } // 對端的吞吐量
setIdle = func(p *peerConnection, accepted int) { p.SetBodiesIdle(accepted) } // 設定peer為idle
)
err := d.fetchParts(errCancelBodyFetch, d.bodyCh, deliver, d.bodyWakeCh, expire,
d.queue.PendingBlocks, d.queue.InFlightBlocks, d.queue.ShouldThrottleBlocks, d.queue.ReserveBodies,
d.bodyFetchHook, fetch, d.queue.CancelBodies, capacity, d.peers.BodyIdlePeers, setIdle, "bodies")
log.Debug("Block body download terminated", "err", err)
return err
}
fetchParts
// fetchParts iteratively downloads scheduled block parts, taking any available
// peers, reserving a chunk of fetch requests for each, waiting for delivery and
// also periodically checking for timeouts.
// fetchParts迭代地下載預定的塊部分,取得任何可用的對等體,為每個部分預留大量的提取請求,等待交付並且還定期檢查超時。
// As the scheduling/timeout logic mostly is the same for all downloaded data
// types, this method is used by each for data gathering and is instrumented with
// various callbacks to handle the slight differences between processing them.
// 由於排程/超時邏輯對於所有下載的資料型別大部分是相同的,所以這個方法被用於不同的區塊型別的下載,並且用各種回撥函式來處理它們之間的細微差別。
// The instrumentation parameters:
// - errCancel: error type to return if the fetch operation is cancelled (mostly makes logging nicer) 如果fetch操作被取消,會在這個通道上傳送資料
// - deliveryCh: channel from which to retrieve downloaded data packets (merged from all concurrent peers) 資料被下載完成後投遞的目的地
// - deliver: processing callback to deliver data packets into type specific download queues (usually within `queue`) 處理完成後資料被投遞到哪個佇列
// - wakeCh: notification channel for waking the fetcher when new tasks are available (or sync completed) 用來通知fetcher 新的任務到來,或者是同步完成
// - expire: task callback method to abort requests that took too long and return the faulty peers (traffic shaping) 因為超時來終止請求的回撥函式。
// - pending: task callback for the number of requests still needing download (detect completion/non-completability) 還需要下載的任務的數量。
// - inFlight: task callback for the number of in-progress requests (wait for all active downloads to finish) 正在處理過程中的請求數量
// - throttle: task callback to check if the processing queue is full and activate throttling (bound memory use) 用來檢查處理佇列是否滿的回撥函式。
// - reserve: task callback to reserve new download tasks to a particular peer (also signals partial completions) 用來為某個peer來預定任務的回撥函式
// - fetchHook: tester callback to notify of new tasks being initiated (allows testing the scheduling logic)
// - fetch: network callback to actually send a particular download request to a physical remote peer //傳送網路請求的回撥函式
// - cancel: task callback to abort an in-flight download request and allow rescheduling it (in case of lost peer) 用來取消正在處理的任務的回撥函式
// - capacity: network callback to retrieve the estimated type-specific bandwidth capacity of a peer (traffic shaping) 網路容量或者是頻寬。
// - idle: network callback to retrieve the currently (type specific) idle peers that can be assigned tasks peer是否空閒的回撥函式
// - setIdle: network callback to set a peer back to idle and update its estimated capacity (traffic shaping) 設定peer為空閒的回撥函式
// - kind: textual label of the type being downloaded to display in log mesages 下載型別,用於日誌
func (d *Downloader) fetchParts(errCancel error, deliveryCh chan dataPack, deliver func(dataPack) (int, error), wakeCh chan bool,
expire func() map[string]int, pending func() int, inFlight func() bool, throttle func() bool, reserve func(*peerConnection, int) (*fetchRequest, bool, error),
fetchHook func([]*types.Header), fetch func(*peerConnection, *fetchRequest) error, cancel func(*fetchRequest), capacity func(*peerConnection) int,
idle func() ([]*peerConnection, int), setIdle func(*peerConnection, int), kind string) error {
// Create a ticker to detect expired retrieval tasks
ticker := time.NewTicker(100 * time.Millisecond)
defer ticker.Stop()
update := make(chan struct{}, 1)
// Prepare the queue and fetch block parts until the block header fetcher's done
finished := false
for {
select {
case <-d.cancelCh:
return errCancel
case packet := <-deliveryCh:
// If the peer was previously banned and failed to deliver it's pack
// in a reasonable time frame, ignore it's message.
// 如果peer在之前被禁止而且沒有在合適的時間deliver它的資料,那麼忽略這個資料
if peer := d.peers.Peer(packet.PeerId()); peer != nil {
// Deliver the received chunk of data and check chain validity
accepted, err := deliver(packet)
if err == errInvalidChain {
return err
}
// Unless a peer delivered something completely else than requested (usually
// caused by a timed out request which came through in the end), set it to
// idle. If the delivery's stale, the peer should have already been idled.
if err != errStaleDelivery {
setIdle(peer, accepted)
}
// Issue a log to the user to see what's going on
switch {
case err == nil && packet.Items() == 0:
peer.log.Trace("Requested data not delivered", "type", kind)
case err == nil:
peer.log.Trace("Delivered new batch of data", "type", kind, "count", packet.Stats())
default:
peer.log.Trace("Failed to deliver retrieved data", "type", kind, "err", err)
}
}
// Blocks assembled, try to update the progress
select {
case update <- struct{}{}:
default:
}
case cont := <-wakeCh:
// The header fetcher sent a continuation flag, check if it's done
// 當所有的任務完成的時候會寫入這個佇列。
if !cont {
finished = true
}
// Headers arrive, try to update the progress
select {
case update <- struct{}{}:
default:
}
case <-ticker.C:
// Sanity check update the progress
select {
case update <- struct{}{}:
default:
}
case <-update:
// Short circuit if we lost all our peers
if d.peers.Len() == 0 {
return errNoPeers
}
// Check for fetch request timeouts and demote the responsible peers
for pid, fails := range expire() {
if peer := d.peers.Peer(pid); peer != nil {
// If a lot of retrieval elements expired, we might have overestimated the remote peer or perhaps
// ourselves. Only reset to minimal throughput but don't drop just yet. If even the minimal times
// out that sync wise we need to get rid of the peer.
//如果很多檢索元素過期,我們可能高估了遠端物件或者我們自己。 只能重置為最小的吞吐量,但不要丟棄。 如果即使最小的同步任然超時,我們需要刪除peer。
// The reason the minimum threshold is 2 is because the downloader tries to estimate the bandwidth
// and latency of a peer separately, which requires pushing the measures capacity a bit and seeing
// how response times reacts, to it always requests one more than the minimum (i.e. min 2).
// 最小閾值為2的原因是因為下載器試圖分別估計對等體的頻寬和等待時間,這需要稍微推動測量容量並且看到響應時間如何反應,總是要求比最小值(即,最小值2)。
if fails > 2 {
peer.log.Trace("Data delivery timed out", "type", kind)
setIdle(peer, 0)
} else {
peer.log.Debug("Stalling delivery, dropping", "type", kind)
d.dropPeer(pid)
}
}
}
// If there's nothing more to fetch, wait or terminate
// 任務全部完成。 那麼退出
if pending() == 0 { //如果沒有等待分配的任務, 那麼break。不用執行下面的程式碼了。
if !inFlight() && finished {
log.Debug("Data fetching completed", "type", kind)
return nil
}
break
}
// Send a download request to all idle peers, until throttled
progressed, throttled, running := false, false, inFlight()
idles, total := idle()
for _, peer := range idles {
// Short circuit if throttling activated
if throttle() {
throttled = true
break
}
// Short circuit if there is no more available task.
if pending() == 0 {
break
}
// Reserve a chunk of fetches for a peer. A nil can mean either that
// no more headers are available, or that the peer is known not to
// have them.
// 為某個peer請求分配任務。
request, progress, err := reserve(peer, capacity(peer))
if err != nil {
return err
}
if progress {
progressed = true
}
if request == nil {
continue
}
if request.From > 0 {
peer.log.Trace("Requesting new batch of data", "type", kind, "from", request.From)
} else if len(request.Headers) > 0 {
peer.log.Trace("Requesting new batch of data", "type", kind, "count", len(request.Headers), "from", request.Headers[0].Number)
} else {
peer.log.Trace("Requesting new batch of data", "type", kind, "count", len(request.Hashes))
}
// Fetch the chunk and make sure any errors return the hashes to the queue
if fetchHook != nil {
fetchHook(request.Headers)
}
if err := fetch(peer, request); err != nil {
// Although we could try and make an attempt to fix this, this error really
// means that we've double allocated a fetch task to a peer. If that is the
// case, the internal state of the downloader and the queue is very wrong so
// better hard crash and note the error instead of silently accumulating into
// a much bigger issue.
panic(fmt.Sprintf("%v: %s fetch assignment failed", peer, kind))
}
running = true
}
// Make sure that we have peers available for fetching. If all peers have been tried
// and all failed throw an error
if !progressed && !throttled && !running && len(idles) == total && pending() > 0 {
return errPeersUnavailable
}
}
}
}
## receipt的處理
receipt的處理和body類似。
// fetchReceipts iteratively downloads the scheduled block receipts, taking any
// available peers, reserving a chunk of receipts for each, waiting for delivery
// and also periodically checking for timeouts.
func (d *Downloader) fetchReceipts(from uint64) error {
log.Debug("Downloading transaction receipts", "origin", from)
var (
deliver = func(packet dataPack) (int, error) {
pack := packet.(*receiptPack)
return d.queue.DeliverReceipts(pack.peerId, pack.receipts)
}
expire = func() map[string]int { return d.queue.ExpireReceipts(d.requestTTL()) }
fetch = func(p *peerConnection, req *fetchRequest) error { return p.FetchReceipts(req) }
capacity = func(p *peerConnection) int { return p.ReceiptCapacity(d.requestRTT()) }
setIdle = func(p *peerConnection, accepted int) { p.SetReceiptsIdle(accepted) }
)
err := d.fetchParts(errCancelReceiptFetch, d.receiptCh, deliver, d.receiptWakeCh, expire,
d.queue.PendingReceipts, d.queue.InFlightReceipts, d.queue.ShouldThrottleReceipts, d.queue.ReserveReceipts,
d.receiptFetchHook, fetch, d.queue.CancelReceipts, capacity, d.peers.ReceiptIdlePeers, setIdle, "receipts")
log.Debug("Transaction receipt download terminated", "err", err)
return err
}
## processFastSyncContent 和 processFullSyncContent
// processFastSyncContent takes fetch results from the queue and writes them to the
// database. It also controls the synchronisation of state nodes of the pivot block.
func (d *Downloader) processFastSyncContent(latest *types.Header) error {
// Start syncing state of the reported head block.
// This should get us most of the state of the pivot block.
// 啟動狀態同步
stateSync := d.syncState(latest.Root)
defer stateSync.Cancel()
go func() {
if err := stateSync.Wait(); err != nil {
d.queue.Close() // wake up WaitResults
}
}()
pivot := d.queue.FastSyncPivot()
for {
results := d.queue.WaitResults() // 等待佇列輸出處理完成的區塊
if len(results) == 0 {
return stateSync.Cancel()
}
if d.chainInsertHook != nil {
d.chainInsertHook(results)
}
P, beforeP, afterP := splitAroundPivot(pivot, results)
// 插入fast sync的資料
if err := d.commitFastSyncData(beforeP, stateSync); err != nil {
return err
}
if P != nil {
// 如果已經達到了 pivot point 那麼等待狀態同步完成,
stateSync.Cancel()
if err := d.commitPivotBlock(P); err != nil {
return err
}
}
// 對於pivot point 之後的所有節點,都需要按照完全的處理。
if err := d.importBlockResults(afterP); err != nil {
return err
}
}
}
processFullSyncContent,比較簡單。 從佇列裡面獲取區塊然後插入。
// processFullSyncContent takes fetch results from the queue and imports them into the chain.
func (d *Downloader) processFullSyncContent() error {
for {
results := d.queue.WaitResults()
if len(results) == 0 {
return nil
}
if d.chainInsertHook != nil {
d.chainInsertHook(results)
}
if err := d.importBlockResults(results); err != nil {
return err
}
}
}
網址:http://www.qukuailianxueyuan.io/
欲領取造幣技術與全套虛擬機器資料
區塊鏈技術交流QQ群:756146052 備註:CSDN
尹成學院微信:備註:CSDN
相關文章
- 以太坊原始碼分析(36)ethdb原始碼分析原始碼
- 以太坊原始碼分析(38)event原始碼分析原始碼
- 以太坊原始碼分析(41)hashimoto原始碼分析原始碼
- 以太坊原始碼分析(43)node原始碼分析原始碼
- 以太坊原始碼分析(51)rpc原始碼分析原始碼RPC
- 以太坊原始碼分析(52)trie原始碼分析原始碼
- 以太坊原始碼分析(13)RPC分析原始碼RPC
- 以太坊原始碼分析(35)eth-fetcher原始碼分析原始碼
- 以太坊原始碼分析(20)core-bloombits原始碼分析原始碼OOM
- 以太坊原始碼分析(24)core-state原始碼分析原始碼
- 以太坊原始碼分析(29)core-vm原始碼分析原始碼
- 以太坊原始碼分析(37)eth以太坊協議分析原始碼協議
- 以太坊原始碼分析(18)以太坊交易執行分析原始碼
- 以太坊原始碼分析(5)accounts程式碼分析原始碼
- 以太坊交易池原始碼分析原始碼
- 以太坊原始碼分析(23)core-state-process原始碼分析原始碼
- 以太坊原始碼分析(31)eth-downloader-peer原始碼分析原始碼
- 以太坊原始碼分析(32)eth-downloader-peer原始碼分析原始碼
- 以太坊原始碼分析(33)eth-downloader-statesync原始碼分析原始碼
- 以太坊原始碼分析(8)區塊分析原始碼
- 以太坊原始碼分析(9)cmd包分析原始碼
- 以太坊原始碼分析(16)挖礦分析原始碼
- 以太坊原始碼分析(26)core-txpool交易池原始碼分析原始碼
- 以太坊原始碼分析(27)core-vm-jumptable-instruction原始碼分析原始碼Struct
- 以太坊原始碼分析(28)core-vm-stack-memory原始碼分析原始碼
- 以太坊原始碼分析(30)eth-bloombits和filter原始碼分析原始碼OOMFilter
- 以太坊原始碼分析(10)CMD深入分析原始碼
- 以太坊原始碼分析(12)交易資料分析原始碼
- 以太坊原始碼分析(19)core-blockchain分析原始碼Blockchain
- 以太坊原始碼分析(44)p2p-database.go原始碼分析原始碼DatabaseGo
- 以太坊原始碼分析(45)p2p-dial.go原始碼分析原始碼Go
- 以太坊原始碼分析(46)p2p-peer.go原始碼分析原始碼Go
- 以太坊原始碼分析(48)p2p-server.go原始碼分析原始碼ServerGo
- 以太坊原始碼分析(49)p2p-table.go原始碼分析原始碼Go
- 以太坊原始碼分析(50)p2p-udp.go原始碼分析原始碼UDPGo
- 以太坊原始碼分析(52)以太坊fast sync演算法原始碼AST演算法
- 以太坊原始碼分析(39)geth啟動流程分析原始碼
- 以太坊原始碼分析(6)accounts賬戶管理分析原始碼