Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is: [7]
[2, 2, 3]
class Solution {
private:
vector<vector<int> > ivvec;
public:
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
vector<int> ivec;
sort(candidates.begin(), candidates.end());
combinationSum(candidates, 0, target, ivec);
return ivvec;
}
void combinationSum(vector<int> &candidates, int beg, int target, vector<int> ivec)
{
if (0 == target)
{
ivvec.push_back(ivec);
return;
}
for (int idx = beg; idx < candidates.size(); ++idx)
{
if (target - candidates[idx] < 0)
break;
ivec.push_back(candidates[idx]);
combinationSum(candidates, idx, target - candidates[idx], ivec);
ivec.pop_back();
}
}
};
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is: [1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
與上題差別不大。依然是用DFS,基本的問題在於怎樣去重。
能夠新增一個剪枝: 噹噹前元素跟前一個元素是同樣的時候。假設前一個元素被取了,那當前元素能夠被取,也能夠不取,反過來假設前一個元素沒有取。那我們這個以及之後的所以同樣元素都不能被取。
(採用flag的向量作為標記元素是否被選取)
class Solution {
private:
vector<vector<int> > ivvec;
vector<bool> flag;
public:
vector<vector<int> > combinationSum2(vector<int> &num, int target) {
vector<int> ivec;
sort(num.begin(), num.end());
flag.resize(num.size());
for (int i = 0; i < flag.size(); ++i)
flag[i] = false;
combinationSum2(num, 0, ivec, target, 0);
return ivvec;
}
void combinationSum2(vector<int> &num, int beg, vector<int> ivec, int target, int sum)
{
if (sum > target)
return;
if (sum == target)
{
ivvec.push_back(ivec);
return;
}
for (int idx = beg; idx < num.size(); ++idx)
{
if (sum + num[idx] > target) continue;
if (idx != 0 && num[idx] == num[idx - 1] && flag[idx - 1] == false)
continue;
flag[idx] = true;
ivec.push_back(num[idx]);
combinationSum2(num, idx + 1, ivec, target, sum + num[idx]);
ivec.pop_back();
flag[idx] = false;
}
}
};
版權宣告:本文博主原創文章。部落格,未經同意不得轉載。