CF24E 二分(應注意二分什麼和二分時的處理細節)
http://codeforces.com/problemset/problem/24/E
Recently the construction of Berland collider has been completed. Collider can be represented as a long narrow tunnel that contains nparticles. We associate with collider 1-dimensional coordinate system, going from left to right. For each particle we know its coordinate and velocity at the moment of start of the collider. The velocities of the particles don't change after the launch of the collider. Berland scientists think that the big bang will happen at the first collision of particles, whose velocities differs in directions. Help them to determine how much time elapses after the launch of the collider before the big bang happens.
The first line contains single integer n (1 ≤ n ≤ 5·105) — amount of particles in the collider. Next n lines contain description of particles. Each particle is described by two integers xi, vi ( - 109 ≤ xi, vi ≤ 109, vi ≠ 0) — coordinate and velocity respectively. All the coordinates are distinct. The particles are listed in order of increasing of coordinates. All the coordinates are in meters, and all the velocities — in meters per second. The negative velocity means that after the start of collider the particle will move to the left, and the positive — that the particle will move to the right.
If there will be no big bang, output -1. Otherwise output one number — how much time in seconds elapses after the launch of the collider before the big bang happens. Your answer must have a relative or absolute error less than 10 - 9.
3 -5 9 0 1 5 -1
1.00000000000000000000
6 1 3 2 3 3 3 4 -3 5 -1 6 -100
0.02912621359223301065
/**
CF24E 二分
題目大意:在x軸上有n個點每個點向左或向右發射子彈,知道每個點的座標和所發射子彈的飛行速度,問所有相向而行的的子彈中最短的相遇時間
解題思路:不能列舉兩方向的點,我們要採取二分時間的方式,由於精度太小可能陷入無限迴圈,我們限制一下二分的次數
*/
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=500005;
int n,a[maxn][2];
bool judge(double t)
{
double d=-1e20;
for(int i=0;i<n;i++)
{
if(a[i][1]>0)
d=max(d,a[i][0]+t*a[i][1]);
else if(a[i][0]+t*a[i][1]<=d)return true;
}
return false;
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)
scanf("%d%d",&a[i][0],&a[i][1]);
double l=0.0,r=1e10;
int t=0;
while(t<100)
{
t++;
double mid=(l+r)/2;
printf("%.20lf\n",mid);
if(judge(mid))
r=mid;
else
l=mid;
}
if(r==1e10)
puts("-1");
else
printf("%.20lf\n",l);
}
return 0;
}
相關文章
- 二分
- 二分插入與二分查詢
- 二分的妙用
- 二分查詢(一)——純粹的二分查詢
- 二分板子
- 二分查詢基礎專題——二分模板
- 二分查詢 理論 例題
- php陣列中二分查詢是什麼PHP陣列
- pycharm 二分類PyCharm
- 二分圖(Java)Java
- 二分圖匹配
- 整體二分
- 二分答案法
- 二分總結
- (C++)二分C++
- D-二分
- 二分查詢
- 整數二分
- 二分找數
- 二分查詢 | 二分查詢的一種推薦寫法
- 二分圖最小點覆蓋等於二分圖最大匹配
- 資訊學奧賽初賽天天練-81-NOIP2015普及組-完善程式-二分答案、二分查詢、中位數、二分邊界、二分時間複雜度時間複雜度
- PHP二分查詢PHP
- 二分查詢法
- c++ 二分答案C++
- 『筆記』二分圖筆記
- 二分演算法演算法
- 【二分】【邊界判定】
- 取反(分塊+二分)
- 二分法
- 二分圖(例題)
- 二分圖補充
- 數列分段(二分)
- 減治思想——二分查詢詳細總結
- 二分查詢的定義
- 順序查詢和二分查詢
- 《機器學習實戰》二分-kMeans演算法(二分K均值聚類)機器學習演算法聚類
- 十分好用的二分查詢模板 手撕二分還怕嗎?