Android的訊息機制

cryAllen發表於2017-02-17

提到訊息機制,想必大家都不陌生吧,在日常開發中不可避免要涉及到這方面的內容。從開發的角度來說,Handler是Android的訊息機制的上層介面,這使得在開發過程中只需要和Handler互動即可。Handler的使用過程很簡單,通過它可以輕鬆地將一個任務切換到Handler所在的執行緒中去執行。由於Android的開發規範的限制,我們並不能在子執行緒中訪問UI控制元件,否則就會觸發程式異常,這個時候通過Handler就可以將更新的UI的操作切換到主執行緒中執行,因此從本質上來來說,Handler並不是專門用於更新UI的,它只是常被開發者用來更新UI。

Android中的訊息機制主要指Handler的執行機制,Handler的執行需要底層的MessageQueue和Looper的支撐。MessageQueue翻譯過來就是訊息佇列,它內部儲存了一組訊息,以佇列的形式對外提供插入和刪除的過程,雖然叫做訊息佇列,但是它內部儲存結構並不是真正的佇列,而是採用單連結串列的資料結構來儲存訊息列表,Looper翻譯過來就是迴圈,這裡可以理解為訊息迴圈。由於MessageQueue只是一個訊息的儲存單元,它不能去處理訊息,而Looper填補了這個功能,Looper會無限迴圈的形式去查詢是否有新的訊息,如果有的話就處理訊息,否則就中一直等待。Looper中還有一個特殊的概念,那就是ThreadLocal,Threadlocal並不是執行緒,它的作用是可以在每個執行緒中儲存資料。

我們知道,Handler建立的時候會採用當前執行緒的Looper來構造訊息迴圈系統,那麼Handler內部如何獲取到當前執行緒的Looper呢,這就要使用ThreadLocal了,ThreadLocal可以在不同的執行緒中互不干擾地儲存並提供資料,通過ThreadLocal可以輕鬆獲取每個執行緒的Looper。需要注意的是,執行緒是預設沒有Looper的,如果需要使用Handler就必須為執行緒建立Looper,我們經常提到的主執行緒,也叫UI執行緒,它就是ActivityThread,ActivityThread被建立時就會初始化Looper,這也是在主執行緒中預設可以使用Handler的原因。

Android的訊息機制概述

我們知道Handler的主要作用是將一個任務切換到某個指定的執行緒中去執行,那麼Android為什麼要提供這個功能呢,這是因為Android規定訪問UI只能在主執行緒中進行,如果子執行緒中訪問UI,那麼程式就會丟擲異常。

  void checkThread() {
        if (mThread != Thread.currentThread()) {
            throw new CalledFromWrongThreadException(
                    "Only the original thread that created a view hierarchy can touch its views.");
        }
    }

這是ViewRootImpl的checkThread方法,從這段程式碼就可以看出,如果不在當前執行緒,就會丟擲異常。同時呢,Android不建議在主執行緒中進行耗時操作, 否則會導致程式無法響應,即ANR。那麼系統為什麼允許在子執行緒中訪問UI呢,這是因為Android中的UI控制元件並不是執行緒安全,它同時也延伸了Java系統中預設程式的話會產生預設的單執行緒習慣,當使用者點選、滑動等事件操作時,UI執行緒是負責分發的,統一管理會更高效點,採取單執行緒來處理UI操作,對於開發者來說也不是很麻煩,只是需要通過Handler切換下UI訪問的執行執行緒即可。

簡單描述下Handler的工作原理,Handler建立完畢後,這個時候內部的Looper以及MessageQueue就可以和Handler一起協同工作,然後通過Handler的post方法將一個Runnable投遞到Handler內部的Looper中去處理,也可以通過Handler的send方法傳送一個訊息,這個訊息同樣會在Looper中去處理。

Android訊息機制分析

先看下整體的架構圖:

整體UML圖

  • Looper有一個MessageQueue訊息佇列
  • MessageQueue有一組待處理的Message
  • Message中有一個用於處理訊息的Handler
  • Handler中有Looper和MessageQueue

Looper的工作原理

Looper在Android的訊息機制扮演著訊息迴圈的角色,具體來說就是它會不停地從MessageQueue中檢視是否有新訊息過來,如果有新的訊息的就會立刻處理,否則就一直阻塞在那裡。首先看下它的構造方法:

  private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
  }

在構造方法中,它會建立一個MessageQueue物件,然後將當前執行緒的物件給儲存起來。我們知道,Handler的工作需要Looper,沒有Looper執行緒就會報錯,那麼如何為一個執行緒建立Looper呢,有以下方法:

    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

從中我們可以看出,每個執行緒只有一個Looper,多建立一個會報錯,然後prepareMainLooper這個方法主要給主執行緒也就是ActivityThread建立Looper使用,其本質也是通過prepare方法來實現的。

    public void quit() {
        mQueue.quit(false);
    }

    public void quitSafely() {
        mQueue.quit(true);
    }

Looper提供了quit和quitSafely方法退出一個Looper,這兩者最主要區別在於一個設定退出標記,一個是把訊息佇列中的已有訊息處理完畢後才安全地退出。

當然還有Looper的loop方法是最核心的。

public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            try {
                msg.target.dispatchMessage(msg);
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

這個也比較好理解,loop方法是一個死迴圈,唯一跳出迴圈的方式就是MessageQueue的next方法返回了null。Looper就會呼叫MessageQueue的quit或者quitSafely方法來通知訊息佇列退出,當訊息佇列被標記為退出狀態時,它的next方法就會返回null,也就是說looper必須退出,否則loop方法就會無限循序下去。

MessageQueue工作原理

在Android中MessageQueue主要包含兩個操作:插入和讀取。讀取操作本身會伴隨著刪除操作,插入和讀取對應的方法分別為enqueueMessage和next,其中enqueueMessage的作用是往訊息佇列中插入一條訊息,而next的作用是從訊息佇列中取出一條訊息並將其從訊息佇列中移除。在MessageQueue內部通過一個單連結串列的資料結構來維護訊息列表,單連結串列在插入和刪除上比較有優勢。

看下enqueueMessage程式碼:

boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

主要操作其實就是單連結串列的插入操作。

看下next程式碼:

 Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

可以發現next方法就是一個無限迴圈的方法,如果訊息佇列中沒有訊息,那麼next方法就會一直阻塞在這裡,當有新訊息到來時,next方法會返回這條訊息並將其從單連結串列中移除。

Message

每個訊息用Message表示,Message主要包含以下內容:

資料型別 成員變數 解釋
int what 訊息類別
long when 訊息觸發時間
int arg1 引數1
int arg2 引數2
Object obj 訊息內容
Handler target 訊息響應方
Runnable callback 回撥方法

建立訊息的過程,就是填充訊息的上述內容的一項或多項。

訊息池

在程式碼中,可能經常看到recycle()方法,咋一看,可能是在做虛擬機器的gc()相關的工作,其實不然,這是用於把訊息加入到訊息池的作用。這樣的好處是,當訊息池不為空時,可以直接從訊息池中獲取Message物件,而不是直接建立,提高效率。

靜態變數sPool的資料型別為Message,通過next成員變數,維護一個訊息池;靜態變數MAX_POOL_SIZE代表訊息池的可用大小;訊息池的預設大小為50。

訊息池常用的操作方法是obtain()和recycle()。

public static Message obtain() {
    synchronized (sPoolSync) {
        if (sPool != null) {
            Message m = sPool;
            sPool = m.next;
            m.next = null; //從sPool中取出一個Message物件,並訊息連結串列斷開
            m.flags = 0; // 清除in-use flag
            sPoolSize--; //訊息池的可用大小進行減1操作
            return m;
        }
    }
    return new Message(); // 當訊息池為空時,直接建立Message物件
}

obtain(),從訊息池取Message,都是把訊息池表頭的Message取走,再把表頭指向next。

public void recycle() {
    if (isInUse()) { //判斷訊息是否正在使用
        if (gCheckRecycle) { //Android 5.0以後的版本預設為true,之前的版本預設為false.
            throw new IllegalStateException("This message cannot be recycled because it is still in use.");
        }
        return;
    }
    recycleUnchecked();
}

//對於不再使用的訊息,加入到訊息池
void recycleUnchecked() {
    //將訊息標示位置為IN_USE,並清空訊息所有的引數。
    flags = FLAG_IN_USE;
    what = 0;
    arg1 = 0;
    arg2 = 0;
    obj = null;
    replyTo = null;
    sendingUid = -1;
    when = 0;
    target = null;
    callback = null;
    data = null;
    synchronized (sPoolSync) {
        if (sPoolSize < MAX_POOL_SIZE) { //當訊息池沒有滿時,將Message物件加入訊息池
            next = sPool;
            sPool = this;
            sPoolSize++; //訊息池的可用大小進行加1操作
        }
    }
}

recycle(),將Message加入到訊息池的過程,都是把Message加到連結串列的表頭。

Handler工作原理

Handler的工作主要包含訊息的傳送和接收過程。訊息傳送可以通過post的一系列的方法以及send的一系列方法來實現,post其實也是通過send的方法來實現的。

看下Handler的構造方法。

    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

從中可以看到關聯MessageQueue、Looper,所以在Handler之前Looper要prepare先,如果沒有Looper的話,就會丟擲“Can't create handler inside thread that has not called Looper.prepare()”這句話。

    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }

    public final boolean sendEmptyMessage(int what)
    {
        return sendEmptyMessageDelayed(what, 0);
    }

    public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageDelayed(msg, delayMillis);
     }

     public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageAtTime(msg, uptimeMillis);
      }

     public final boolean sendMessageDelayed(Message msg, long delayMillis)
     {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
     }

     public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
      }

     public final boolean sendMessageAtFrontOfQueue(Message msg) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, 0);
      }

從中可以看出,最終都是呼叫sendMessageAtTime/sendMessageAtFrontOfQueue方法,進而執行enqueueMessage方法,最終把訊息傳送到MessageQueue佇列中。
相關訊息傳送方式

那麼訊息又是如何在Handler處理的呢?

    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

通過dispatchMessage來處理訊息的。

ThreadLocal工作原理

ThreadLocal是一個 執行緒內部的資料儲存類,通過它可以在指定的執行緒中儲存資料,資料儲存以後,只有在指定執行緒中可以獲取到儲存的資料,對於其他執行緒來說是無法獲取到資料。在日常開發中用到ThreadLocal的場景很少,但是在某些特殊的場景下,通過ThreadLocal可以輕鬆地實現一些看起來很複雜的功能,這一點在Android原始碼中也有所體現,比如Looper、ActivityThread以及AMS中都用到ThreadLocal。

ThreadLocal.set(T value):將value儲存到當前執行緒的TLS區域。

  public void set(T value) {
      Thread currentThread = Thread.currentThread(); //獲取當前執行緒
      Values values = values(currentThread); //查詢當前執行緒的本地儲存區
      if (values == null) {
          //當執行緒本地儲存區,尚未儲存該執行緒相關資訊時,則建立Values物件
          values = initializeValues(currentThread);
      }
      //儲存資料value到當前執行緒this
      values.put(this, value);
  }

在set方法中,首先會通過values方法來獲取當前執行緒的ThreadLocal資料,通過put方式去獲取。

ThreadLocal.get():獲取當前執行緒TLS區域的資料。

public T get() {
      Thread currentThread = Thread.currentThread(); //獲取當前執行緒
      Values values = values(currentThread); //查詢當前執行緒的本地儲存區
      if (values != null) {
          Object[] table = values.table;
          int index = hash & values.mask;
          if (this.reference == table[index]) {
              return (T) table[index + 1]; //返回當前執行緒儲存區中的資料
          }
      } else {
          //建立Values物件
          values = initializeValues(currentThread);
      }
      return (T) values.getAfterMiss(this); //從目標執行緒儲存區沒有查詢是則返回null
  }

get方法同樣是取出當前執行緒的localValues物件,如果這個物件為null,那麼就返回初始值。

在Looper原始碼中,有這麼一句:

   // sThreadLocal.get() will return null unless you've called prepare().
    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();

從ThreadLocal的set和get方法可以看出,它們所操作的物件都是當前執行緒的localValues物件的table陣列,因此在不同執行緒中訪問同一個ThreadLocal的set和get方法,它們對ThreadLocal所做的讀/寫操作僅限於各自執行緒的內部,這也就是為什麼ThreadLocal可以在多個執行緒中互不干擾地儲存和修改資料。

所以,整體來說,Handler、Looper、MessageQueue、Message這三者之間的關係如下:
訊息機制關係圖

主執行緒的訊息迴圈

Android的主執行緒就是ActivityThread,主執行緒的入口方法在main,在main方法中系統會通過Looper.prepareMainLooper方法來建立主執行緒的Looper以及MessageQueue,並通過Looper.loop方法來開啟主執行緒的訊息迴圈。

public static void main(String[] args) {
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
        SamplingProfilerIntegration.start();

        // CloseGuard defaults to true and can be quite spammy.  We
        // disable it here, but selectively enable it later (via
        // StrictMode) on debug builds, but using DropBox, not logs.
        CloseGuard.setEnabled(false);

        Environment.initForCurrentUser();

        // Set the reporter for event logging in libcore
        EventLogger.setReporter(new EventLoggingReporter());

        // Make sure TrustedCertificateStore looks in the right place for CA certificates
        final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
        TrustedCertificateStore.setDefaultUserDirectory(configDir);

        Process.setArgV0("<pre-initialized>");

        Looper.prepareMainLooper();

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

主執行緒的訊息迴圈開始以後,ActivityThread還需要一個Handler來和訊息佇列進行互動,這個Handler就是ActivityThread.H,它內部定義了一組訊息型別,主要包括了四大元件的啟動和停止等過程。


    private class H extends Handler {
        public static final int LAUNCH_ACTIVITY         = 100;
        public static final int PAUSE_ACTIVITY          = 101;
        public static final int PAUSE_ACTIVITY_FINISHING= 102;
        public static final int STOP_ACTIVITY_SHOW      = 103;
        public static final int STOP_ACTIVITY_HIDE      = 104;
        public static final int SHOW_WINDOW             = 105;
        public static final int HIDE_WINDOW             = 106;
        public static final int RESUME_ACTIVITY         = 107;
        public static final int SEND_RESULT             = 108;
        public static final int DESTROY_ACTIVITY        = 109;
        public static final int BIND_APPLICATION        = 110;
        public static final int EXIT_APPLICATION        = 111;
        public static final int NEW_INTENT              = 112;
        public static final int RECEIVER                = 113;
        public static final int CREATE_SERVICE          = 114;
        public static final int SERVICE_ARGS            = 115;
        public static final int STOP_SERVICE            = 116;

        public static final int CONFIGURATION_CHANGED   = 118;
        public static final int CLEAN_UP_CONTEXT        = 119;
        public static final int GC_WHEN_IDLE            = 120;
        public static final int BIND_SERVICE            = 121;
        public static final int UNBIND_SERVICE          = 122;
        public static final int DUMP_SERVICE            = 123;
        public static final int LOW_MEMORY              = 124;
        public static final int ACTIVITY_CONFIGURATION_CHANGED = 125;
        public static final int RELAUNCH_ACTIVITY       = 126;
        public static final int PROFILER_CONTROL        = 127;
        public static final int CREATE_BACKUP_AGENT     = 128;
        public static final int DESTROY_BACKUP_AGENT    = 129;
        public static final int SUICIDE                 = 130;
        public static final int REMOVE_PROVIDER         = 131;
        public static final int ENABLE_JIT              = 132;
        public static final int DISPATCH_PACKAGE_BROADCAST = 133;
        public static final int SCHEDULE_CRASH          = 134;
        public static final int DUMP_HEAP               = 135;
        public static final int DUMP_ACTIVITY           = 136;
        public static final int SLEEPING                = 137;
        public static final int SET_CORE_SETTINGS       = 138;
        public static final int UPDATE_PACKAGE_COMPATIBILITY_INFO = 139;
        public static final int TRIM_MEMORY             = 140;
        public static final int DUMP_PROVIDER           = 141;
        public static final int UNSTABLE_PROVIDER_DIED  = 142;
        public static final int REQUEST_ASSIST_CONTEXT_EXTRAS = 143;
        public static final int TRANSLUCENT_CONVERSION_COMPLETE = 144;
        public static final int INSTALL_PROVIDER        = 145;
        public static final int ON_NEW_ACTIVITY_OPTIONS = 146;
        public static final int CANCEL_VISIBLE_BEHIND = 147;
        public static final int BACKGROUND_VISIBLE_BEHIND_CHANGED = 148;
        public static final int ENTER_ANIMATION_COMPLETE = 149;
        public static final int START_BINDER_TRACKING = 150;
        public static final int STOP_BINDER_TRACKING_AND_DUMP = 151;
        public static final int MULTI_WINDOW_MODE_CHANGED = 152;
        public static final int PICTURE_IN_PICTURE_MODE_CHANGED = 153;
        public static final int LOCAL_VOICE_INTERACTION_STARTED = 154;

        String codeToString(int code) {
            if (DEBUG_MESSAGES) {
                switch (code) {
                    case LAUNCH_ACTIVITY: return "LAUNCH_ACTIVITY";
                    case PAUSE_ACTIVITY: return "PAUSE_ACTIVITY";
                    case PAUSE_ACTIVITY_FINISHING: return "PAUSE_ACTIVITY_FINISHING";
                    case STOP_ACTIVITY_SHOW: return "STOP_ACTIVITY_SHOW";
                    case STOP_ACTIVITY_HIDE: return "STOP_ACTIVITY_HIDE";
                    case SHOW_WINDOW: return "SHOW_WINDOW";
                    case HIDE_WINDOW: return "HIDE_WINDOW";
                    case RESUME_ACTIVITY: return "RESUME_ACTIVITY";
                    case SEND_RESULT: return "SEND_RESULT";
                    case DESTROY_ACTIVITY: return "DESTROY_ACTIVITY";
                    case BIND_APPLICATION: return "BIND_APPLICATION";
                    case EXIT_APPLICATION: return "EXIT_APPLICATION";
                    case NEW_INTENT: return "NEW_INTENT";
                    case RECEIVER: return "RECEIVER";
                    case CREATE_SERVICE: return "CREATE_SERVICE";
                    case SERVICE_ARGS: return "SERVICE_ARGS";
                    case STOP_SERVICE: return "STOP_SERVICE";
                    case CONFIGURATION_CHANGED: return "CONFIGURATION_CHANGED";
                    case CLEAN_UP_CONTEXT: return "CLEAN_UP_CONTEXT";
                    case GC_WHEN_IDLE: return "GC_WHEN_IDLE";
                    case BIND_SERVICE: return "BIND_SERVICE";
                    case UNBIND_SERVICE: return "UNBIND_SERVICE";
                    case DUMP_SERVICE: return "DUMP_SERVICE";
                    case LOW_MEMORY: return "LOW_MEMORY";
                    case ACTIVITY_CONFIGURATION_CHANGED: return "ACTIVITY_CONFIGURATION_CHANGED";
                    case RELAUNCH_ACTIVITY: return "RELAUNCH_ACTIVITY";
                    case PROFILER_CONTROL: return "PROFILER_CONTROL";
                    case CREATE_BACKUP_AGENT: return "CREATE_BACKUP_AGENT";
                    case DESTROY_BACKUP_AGENT: return "DESTROY_BACKUP_AGENT";
                    case SUICIDE: return "SUICIDE";
                    case REMOVE_PROVIDER: return "REMOVE_PROVIDER";
                    case ENABLE_JIT: return "ENABLE_JIT";
                    case DISPATCH_PACKAGE_BROADCAST: return "DISPATCH_PACKAGE_BROADCAST";
                    case SCHEDULE_CRASH: return "SCHEDULE_CRASH";
                    case DUMP_HEAP: return "DUMP_HEAP";
                    case DUMP_ACTIVITY: return "DUMP_ACTIVITY";
                    case SLEEPING: return "SLEEPING";
                    case SET_CORE_SETTINGS: return "SET_CORE_SETTINGS";
                    case UPDATE_PACKAGE_COMPATIBILITY_INFO: return "UPDATE_PACKAGE_COMPATIBILITY_INFO";
                    case TRIM_MEMORY: return "TRIM_MEMORY";
                    case DUMP_PROVIDER: return "DUMP_PROVIDER";
                    case UNSTABLE_PROVIDER_DIED: return "UNSTABLE_PROVIDER_DIED";
                    case REQUEST_ASSIST_CONTEXT_EXTRAS: return "REQUEST_ASSIST_CONTEXT_EXTRAS";
                    case TRANSLUCENT_CONVERSION_COMPLETE: return "TRANSLUCENT_CONVERSION_COMPLETE";
                    case INSTALL_PROVIDER: return "INSTALL_PROVIDER";
                    case ON_NEW_ACTIVITY_OPTIONS: return "ON_NEW_ACTIVITY_OPTIONS";
                    case CANCEL_VISIBLE_BEHIND: return "CANCEL_VISIBLE_BEHIND";
                    case BACKGROUND_VISIBLE_BEHIND_CHANGED: return "BACKGROUND_VISIBLE_BEHIND_CHANGED";
                    case ENTER_ANIMATION_COMPLETE: return "ENTER_ANIMATION_COMPLETE";
                    case MULTI_WINDOW_MODE_CHANGED: return "MULTI_WINDOW_MODE_CHANGED";
                    case PICTURE_IN_PICTURE_MODE_CHANGED: return "PICTURE_IN_PICTURE_MODE_CHANGED";
                    case LOCAL_VOICE_INTERACTION_STARTED: return "LOCAL_VOICE_INTERACTION_STARTED";
                }
            }
            return Integer.toString(code);
        }
        public void handleMessage(Message msg) {
            if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " + codeToString(msg.what));
            switch (msg.what) {
                case LAUNCH_ACTIVITY: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStart");
                    final ActivityClientRecord r = (ActivityClientRecord) msg.obj;

                    r.packageInfo = getPackageInfoNoCheck(
                            r.activityInfo.applicationInfo, r.compatInfo);
                    handleLaunchActivity(r, null, "LAUNCH_ACTIVITY");
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                } break;
                case RELAUNCH_ACTIVITY: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityRestart");
                    ActivityClientRecord r = (ActivityClientRecord)msg.obj;
                    handleRelaunchActivity(r);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                } break;
                case PAUSE_ACTIVITY: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                    SomeArgs args = (SomeArgs) msg.obj;
                    handlePauseActivity((IBinder) args.arg1, false,
                            (args.argi1 & USER_LEAVING) != 0, args.argi2,
                            (args.argi1 & DONT_REPORT) != 0, args.argi3);
                    maybeSnapshot();
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                } break;
                case PAUSE_ACTIVITY_FINISHING: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                    SomeArgs args = (SomeArgs) msg.obj;
                    handlePauseActivity((IBinder) args.arg1, true, (args.argi1 & USER_LEAVING) != 0,
                            args.argi2, (args.argi1 & DONT_REPORT) != 0, args.argi3);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                } break;
                case STOP_ACTIVITY_SHOW: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStop");
                    SomeArgs args = (SomeArgs) msg.obj;
                    handleStopActivity((IBinder) args.arg1, true, args.argi2, args.argi3);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                } break;
                case STOP_ACTIVITY_HIDE: {
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStop");
                    SomeArgs args = (SomeArgs) msg.obj;
                    handleStopActivity((IBinder) args.arg1, false, args.argi2, args.argi3);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                } break;
                case SHOW_WINDOW:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityShowWindow");
                    handleWindowVisibility((IBinder)msg.obj, true);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case HIDE_WINDOW:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityHideWindow");
                    handleWindowVisibility((IBinder)msg.obj, false);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case RESUME_ACTIVITY:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityResume");
                    SomeArgs args = (SomeArgs) msg.obj;
                    handleResumeActivity((IBinder) args.arg1, true, args.argi1 != 0, true,
                            args.argi3, "RESUME_ACTIVITY");
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case SEND_RESULT:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityDeliverResult");
                    handleSendResult((ResultData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case DESTROY_ACTIVITY:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityDestroy");
                    handleDestroyActivity((IBinder)msg.obj, msg.arg1 != 0,
                            msg.arg2, false);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case BIND_APPLICATION:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "bindApplication");
                    AppBindData data = (AppBindData)msg.obj;
                    handleBindApplication(data);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case EXIT_APPLICATION:
                    if (mInitialApplication != null) {
                        mInitialApplication.onTerminate();
                    }
                    Looper.myLooper().quit();
                    break;
                case NEW_INTENT:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityNewIntent");
                    handleNewIntent((NewIntentData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case RECEIVER:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "broadcastReceiveComp");
                    handleReceiver((ReceiverData)msg.obj);
                    maybeSnapshot();
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case CREATE_SERVICE:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, ("serviceCreate: " + String.valueOf(msg.obj)));
                    handleCreateService((CreateServiceData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case BIND_SERVICE:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "serviceBind");
                    handleBindService((BindServiceData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case UNBIND_SERVICE:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "serviceUnbind");
                    handleUnbindService((BindServiceData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case SERVICE_ARGS:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, ("serviceStart: " + String.valueOf(msg.obj)));
                    handleServiceArgs((ServiceArgsData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case STOP_SERVICE:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "serviceStop");
                    handleStopService((IBinder)msg.obj);
                    maybeSnapshot();
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case CONFIGURATION_CHANGED:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "configChanged");
                    mCurDefaultDisplayDpi = ((Configuration)msg.obj).densityDpi;
                    mUpdatingSystemConfig = true;
                    handleConfigurationChanged((Configuration)msg.obj, null);
                    mUpdatingSystemConfig = false;
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case CLEAN_UP_CONTEXT:
                    ContextCleanupInfo cci = (ContextCleanupInfo)msg.obj;
                    cci.context.performFinalCleanup(cci.who, cci.what);
                    break;
                case GC_WHEN_IDLE:
                    scheduleGcIdler();
                    break;
                case DUMP_SERVICE:
                    handleDumpService((DumpComponentInfo)msg.obj);
                    break;
                case LOW_MEMORY:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "lowMemory");
                    handleLowMemory();
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case ACTIVITY_CONFIGURATION_CHANGED:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityConfigChanged");
                    handleActivityConfigurationChanged((ActivityConfigChangeData) msg.obj,
                            msg.arg1 == 1 ? REPORT_TO_ACTIVITY : !REPORT_TO_ACTIVITY);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case PROFILER_CONTROL:
                    handleProfilerControl(msg.arg1 != 0, (ProfilerInfo)msg.obj, msg.arg2);
                    break;
                case CREATE_BACKUP_AGENT:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "backupCreateAgent");
                    handleCreateBackupAgent((CreateBackupAgentData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case DESTROY_BACKUP_AGENT:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "backupDestroyAgent");
                    handleDestroyBackupAgent((CreateBackupAgentData)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case SUICIDE:
                    Process.killProcess(Process.myPid());
                    break;
                case REMOVE_PROVIDER:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "providerRemove");
                    completeRemoveProvider((ProviderRefCount)msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case ENABLE_JIT:
                    ensureJitEnabled();
                    break;
                case DISPATCH_PACKAGE_BROADCAST:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "broadcastPackage");
                    handleDispatchPackageBroadcast(msg.arg1, (String[])msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case SCHEDULE_CRASH:
                    throw new RemoteServiceException((String)msg.obj);
                case DUMP_HEAP:
                    handleDumpHeap(msg.arg1 != 0, (DumpHeapData)msg.obj);
                    break;
                case DUMP_ACTIVITY:
                    handleDumpActivity((DumpComponentInfo)msg.obj);
                    break;
                case DUMP_PROVIDER:
                    handleDumpProvider((DumpComponentInfo)msg.obj);
                    break;
                case SLEEPING:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "sleeping");
                    handleSleeping((IBinder)msg.obj, msg.arg1 != 0);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case SET_CORE_SETTINGS:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "setCoreSettings");
                    handleSetCoreSettings((Bundle) msg.obj);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case UPDATE_PACKAGE_COMPATIBILITY_INFO:
                    handleUpdatePackageCompatibilityInfo((UpdateCompatibilityData)msg.obj);
                    break;
                case TRIM_MEMORY:
                    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "trimMemory");
                    handleTrimMemory(msg.arg1);
                    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    break;
                case UNSTABLE_PROVIDER_DIED:
                    handleUnstableProviderDied((IBinder)msg.obj, false);
                    break;
                case REQUEST_ASSIST_CONTEXT_EXTRAS:
                    handleRequestAssistContextExtras((RequestAssistContextExtras)msg.obj);
                    break;
                case TRANSLUCENT_CONVERSION_COMPLETE:
                    handleTranslucentConversionComplete((IBinder)msg.obj, msg.arg1 == 1);
                    break;
                case INSTALL_PROVIDER:
                    handleInstallProvider((ProviderInfo) msg.obj);
                    break;
                case ON_NEW_ACTIVITY_OPTIONS:
                    Pair<IBinder, ActivityOptions> pair = (Pair<IBinder, ActivityOptions>) msg.obj;
                    onNewActivityOptions(pair.first, pair.second);
                    break;
                case CANCEL_VISIBLE_BEHIND:
                    handleCancelVisibleBehind((IBinder) msg.obj);
                    break;
                case BACKGROUND_VISIBLE_BEHIND_CHANGED:
                    handleOnBackgroundVisibleBehindChanged((IBinder) msg.obj, msg.arg1 > 0);
                    break;
                case ENTER_ANIMATION_COMPLETE:
                    handleEnterAnimationComplete((IBinder) msg.obj);
                    break;
                case START_BINDER_TRACKING:
                    handleStartBinderTracking();
                    break;
                case STOP_BINDER_TRACKING_AND_DUMP:
                    handleStopBinderTrackingAndDump((ParcelFileDescriptor) msg.obj);
                    break;
                case MULTI_WINDOW_MODE_CHANGED:
                    handleMultiWindowModeChanged((IBinder) msg.obj, msg.arg1 == 1);
                    break;
                case PICTURE_IN_PICTURE_MODE_CHANGED:
                    handlePictureInPictureModeChanged((IBinder) msg.obj, msg.arg1 == 1);
                    break;
                case LOCAL_VOICE_INTERACTION_STARTED:
                    handleLocalVoiceInteractionStarted((IBinder) ((SomeArgs) msg.obj).arg1,
                            (IVoiceInteractor) ((SomeArgs) msg.obj).arg2);
                    break;
            }
            Object obj = msg.obj;
            if (obj instanceof SomeArgs) {
                ((SomeArgs) obj).recycle();
            }
            if (DEBUG_MESSAGES) Slog.v(TAG, "<<< done: " + codeToString(msg.what));
        }

ActivityThread通過ApplicationThread和AMS進行程式間通訊,AMS以程式間通訊的方式完成ActivityThread的請求回撥ApplicationThread中Binder方法然後ApplicationThread向H傳送訊息,H收到訊息後會將ApplicationThread的邏輯切換到ActivityThread中去執行,即切換到主執行緒中去執行,整個過程就是主執行緒的訊息迴圈模型。

HandlerThread

HandlerThread類的原始碼:

public class HandlerThread extends Thread {
    int mPriority;
    int mTid = -1;
    Looper mLooper;

    public HandlerThread(String name) {
        super(name);
        mPriority = Process.THREAD_PRIORITY_DEFAULT;
    }
   
    public HandlerThread(String name, int priority) {
        super(name);
        mPriority = priority;
    }
  
    protected void onLooperPrepared() {
    }

    @Override
    public void run() {
        mTid = Process.myTid();
        Looper.prepare();
        synchronized (this) {
            mLooper = Looper.myLooper();
            notifyAll();
        }
        Process.setThreadPriority(mPriority);
        onLooperPrepared();
        Looper.loop();
        mTid = -1;
    }
    
    public Looper getLooper() {
        if (!isAlive()) {
            return null;
        }
        
        // If the thread has been started, wait until the looper has been created.
        synchronized (this) {
            while (isAlive() && mLooper == null) {
                try {
                    wait();
                } catch (InterruptedException e) {
                }
            }
        }
        return mLooper;
    }

    public boolean quit() {
        Looper looper = getLooper();
        if (looper != null) {
            looper.quit();
            return true;
        }
        return false;
    }
  
    public boolean quitSafely() {
        Looper looper = getLooper();
        if (looper != null) {
            looper.quitSafely();
            return true;
        }
        return false;
    }

    /**
     * Returns the identifier of this thread. See Process.myTid().
     */
    public int getThreadId() {
        return mTid;
    }
}

可以看到HandlerThread繼承於Thread類,在獲取Looper物件時候,當執行緒已經啟動,則等待直到looper建立完成才能獲取,從本質上看HandlerThread是對Thread的封裝,主要用途在於多個執行緒的通訊,會有同步的問題,那麼Android對此直接提供了HandlerThread類。

HandlerThread實戰

在HandlerThread執行緒中執行Loop()方法,在其他執行緒中通過Handler傳送訊息到HandlerThread執行緒。通過wait/notifyAll的方式,有效地解決了多執行緒的同步問題。從原始碼中我們也可以看到當looper沒獲取成功就會阻塞,然後有執行完就會去喚醒所有阻塞的執行緒。

// Step 1: 建立並啟動HandlerThread執行緒,內部包含Looper
HandlerThread handlerThread = new HandlerThread("test");
handlerThread.start();

// Step 2: 建立Handler
Handler handler = new Handler(handlerThread.getLooper());

// Step 3: 傳送訊息
handler.post(new Runnable() {

        @Override
        public void run() {
            System.out.println("thread id="+Thread.currentThread().getId());
        }
    });

閱讀擴充套件

源於對掌握的Android開發基礎點進行整理,羅列下已經總結的文章,從中可以看到技術積累的過程。
1,Android系統簡介
2,ProGuard程式碼混淆
3,講講Handler+Looper+MessageQueue關係
4,Android圖片載入庫理解
5,談談Android執行時許可權理解
6,EventBus初理解
7,Android 常見工具類
8,對於Fragment的一些理解
9,Android 四大元件之 " Activity "
10,Android 四大元件之" Service "
11,Android 四大元件之“ BroadcastReceiver "
12,Android 四大元件之" ContentProvider "
13,講講 Android 事件攔截機制
14,Android 動畫的理解
15,Android 生命週期和啟動模式
16,Android IPC 機制
17,View 的事件體系
18,View 的工作原理
19,理解 Window 和 WindowManager
20,Activity 啟動過程分析
21,Service 啟動過程分析
22,Android 效能優化
23,Android 訊息機制
24,Android Bitmap相關
25,Android 執行緒和執行緒池
26,Android 中的 Drawable 和動畫
27,RecylerView 中的裝飾者模式
28,Android 觸控事件機制
29,Android 事件機制應用
30,Cordova 框架的一些理解
31,有關 Android 外掛化思考
32,開發人員必備技能——單元測試

相關文章