騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

騰訊AI實驗室發表於2018-12-12

本篇文章介紹了iGrow團隊在AI+農業領域國際人工智慧溫室種植大賽上的獲獎情況。

今天,荷蘭瓦赫寧根大學(WUR)主辦的國際人工智慧溫室種植大賽(Autonomous Greenhouse Challenge)結果揭曉,AI溫室種黃瓜很有潛力!騰訊AI Lab與農業專家組成的iGrow隊脫穎而出,獲“AI策略”單項第一名、總分第二名的優異成績。在比賽中,騰訊實現了AI+農業領域的技術探索,其首創的農業人工智慧系統攻克了機器智慧嵌入農業專家知識的難題。種植結果顯示,該人工智慧系統提高了農產品的產量和自然資源利用率,還大幅降低了感測器成本,體現了“AI+農業”的應用潛力。
騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

iGrow團隊部分代表領獎

本次大賽由荷蘭瓦赫寧根大學於今年3月發起,旨在透過人工智慧與農業等多學科團隊協作,展示人工智慧驅動溫室的能力,在提升農業生產力的同時,減少資源消耗,滿足日益增長的人口需求,幫助人類過上更健康的生活。比賽的挑戰目標,是在4個月內生產出高產量、高資源利用率的黃瓜作物。參賽團隊利用感測器和攝像頭,獲取溫室氣候、作物發育情況等資料,加入自己的模型或機器學習演算法,遠端控制作物生長。

騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

比賽的溫室

大賽吸引了包括騰訊(iGrow隊)、微軟(Sonoma隊)、英特爾(Deep_greens隊)等在內的來自15個國家的14支團隊參與。其中,iGrow隊由來自騰訊AI Lab的AI專家,以及來自中國農業科學院、北京農業資訊科技研究中心、黑龍江植物學會、Syngenta種子公司、荷蘭瓦赫寧根大學的農業專家和學生組成。在長達半年多的比賽中,iGrow隊歷經程式設計馬拉松、黃瓜種植挑戰和總決賽,一路披荊斬棘,最終取得“AI 策略”單項第一名、總分第二名的優秀成績。

AI策略排名

團隊

分數(滿分5)

1

iGrow

5

2

The Croperators

4

3

Sonoma

3

4

AiCU

2

5

Deep_greens

1

AI 策略第一名

總排名

團隊

總分(滿分50)

1

Sonoma

44

2

iGrow

43

3

The Croperators

31

4

AiCU

22

5

Deep_greens

10

總分與第一名的微軟團隊Sonoma僅一分之差

首創農業人工智慧系統

有效融合機器智慧與人類知識

目前在AI+農業領域,一大技術難點在於,計算機模擬受農業生產的特點影響,與真實的農業種植之間存在巨大的鴻溝。在農業生產中,影響作物生長的因素極為複雜,種植很難標準化,環境變化也難以預測,這些因素會嚴重阻礙人工智慧的效能發揮。儘管本次比賽為環境相對可控、較易標準化的溫室黃瓜生產,但計算機模擬如何有效遷移到真實的農業種植中,依然是一大技術挑戰。
騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

iGrow團隊人工智慧系統

比賽中,騰訊AI Lab的AI專家根據植物學、生物學和物理學等相關學科知識進行建模,建立起模擬氣候環境和作物生長的模擬器。隨後,團隊開創性地搭建出一個農業人工智慧系統,透過創新的強化學習方法,將iGrow農業專家的知識和經驗自然地嵌入模擬器中,使人類專家能夠在種植密度、灌溉施肥、打頂剪枝等方面,實現對AI的有效干預,提高AI學習效率,最終在資源最最佳化的同時,最大程度地提升了作物產量。

騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍
騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

溫室的日與夜——遠端操控溫室

降低感測器成本,可終身學習

與人類知識融合之後的AI系統,無需專家再次干預,即能自動適應新的環境和條件變化,因此可以快速複製到同類溫室種植中,為擴大生產規模、實現標準化生產提供條件。在生產自動化方面,該系統可自主執行,從而大幅降低人工管理難度,節約大量人力。

騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍
在本次大賽中,iGrow隊因減少感測器使用成本而備受好評。與其他AI種植團隊額外新增了諸多感測器不同,iGrow 隊僅利用主辦方配置的有限的感測器,便取得了十分優秀的成績。系統透過高效的資料模擬和運算,減少了不必要的感測器的使用,大大降低了智慧農業的生產成本,在市場應用和推廣上頗具潛力。
騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

溫室高壓鈉燈補光

“該系統還是具備終身學習能力的超級智慧體。”騰訊AI Lab專家進一步表示,“隨著技術發展,它能利用更先進的模擬器,以及更大規模的種植實踐獲得的資料,靈活地整合人類知識和經驗,持續迭代升級。”

全域性最佳化,快速提升經濟效益


大賽結果顯示,iGrow隊在黃瓜產量、質量、資源利用率上,均表現十分出色。在整個過程中,採用了生物防治系統,符合人們對健康生活品質的要求。

騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

iGrow團隊種出的“標緻“黃瓜

與傳統的人工種植相比,人工智慧的優勢在於,它能對種植過程進行全域性最佳化。從一開始的種植密度、留莖比例,到後來的留葉、留果策略,以及在溫室中對光照、通風、溫度、溼度、CO2濃度、水分等的控制,它都能在模擬器中透過強化學習自動尋找最優解。人工智慧可為作物的各個生長週期尋找和提供最適宜的環境狀態,同時進行資源最優配比,以最大化地節省資源。“人工智慧另一個巨大的優勢是,它可以在短時間內進行大量模擬實驗,相比在真實環境中緩慢地進行人工種植摸索,它能以很低的成本快速提升智慧管理水平和經濟效益。”騰訊AI Lab團隊介紹道。

騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

AI的優勢

AI覆蓋農業生產全過程

應對全球人口和資源挑戰

本次比賽充分展現了人工智慧驅動溫室的能力,但人工智慧的應用並不僅限於室內農業。騰訊希望藉此機會,探索室內和室外農業的機會,以瞭解人工智慧如何在全球範圍內提高糧食生產力水平,應對人口增長和可持續性發展的挑戰。

騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

根據聯合國9月釋出的《2018年世界糧食安全和營養狀況》報告,全球現有8.21億人口處於飢餓狀態(每9人中就有1人在捱餓),已重回10年前的水平,這種倒退趨勢向我們發出嚴重警告。造成飢餓的主要原因之一,是由於氣候變化、乾旱和洪水等極端天氣對傳統農業生產的破壞。

除了現有的饑荒和氣候問題,人類還面臨未來人口增長和資源緊缺的挑戰。聯合國預計,到 2030年,地球人口將增至85億,與之相反,伴隨著全球的城市化程式,耕地面積和務農人口卻在持續減少。如何在氣候變化、資源有限的情況下增加農業產出,同時保持可持續發展,是全人類所面臨的重大難題。
騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

“食物、能源和水對我們的未來至關重要。我們必須擴充現有的體系和架構,以適應新的全球挑戰。人工智慧是其中的一種解決方案,目標是以最少的投入獲取最多的產出。”騰訊首席探索官網大為在11月的騰訊WE大會上談到,“儘管目前AI+農業的應用尚屬早期,但已經取得了令人興奮的成果。如果進一步實現自動化,其釋放的生產力將是驚人的。我們應該充分認識到人工智慧可以發揮的作用,並且積極投入資源去進行技術研發。提高糧食生產力是全球的優先事項,而不僅僅是潛在的商業機會。我們需要鼓勵更大膽的設想,激發出更多的解決方案。”


騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

騰訊首席探索官網大為在騰訊WE大會上談AI+農業


產前:育種選種、土壤分析

近年來,隨著人工智慧技術不斷髮展,其應用已逐漸滲入農業生產全過程。例如,在產前階段,深度人工神經網路(DNN)可利用物聯網獲取的資料,對灌溉用水進行分析和指導,並透過對土壤成分的檢測分析,選擇適宜種植的作物品種,合理施肥。透過對農作物市場週期需求的大資料分析和預測,也可指導作物種植品種選擇,避免產銷脫節引發價格劇烈波動,造成經濟損失和農產品浪費。另外,雲端計算大資料分析和機器學習等技術,還可以幫助篩選和改良農作物基因,達到提升口味、增強抗蟲性、增加產量的目的。


騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

產中:病蟲害管理、自動採收

在產中階段,人工智慧技術可用於監測環境資料和農作物生長情況。透過建立病蟲草害特徵分類資料庫,並利用計算機視覺技術識別作物品種、病害程度和雜草生長情況,可實現智慧預防和管理病蟲草害,減少經濟損失。不僅如此,這在一定程度上還可減少除草劑和殺蟲劑的使用,提升農產品安全性,減輕環境影響。

針對傳統農業“看天吃飯”的缺陷,利用機器學習技術處理衛星影像資料,可預測天氣等環境變化對作物的影響,提前應對。在採收環節,計算機視覺技術與機械臂或機器人結合,可實現24小時自動化採收,節省人力,降低成本。此外,大資料處理和語音識別等技術可運用於農業智慧專家系統中,為農業從業者提供專業諮詢服務和指導,幫助解決生產中各種技術問題。

騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

產後:品質檢測、最佳化物流

在產後階段,具有計算機視覺的機械臂可進行農產品售前品質檢測、分類和包裝等工作;用大資料分析市場行情,可幫助農產品電商運營,引導企業制定更靈活準確的銷售策略;透過人工智慧遺傳演算法和多目標路徑最佳化數學模型,可對物流配送路徑進行智慧最佳化,完善生鮮農產品供應鏈等。


騰訊初探AI+農業,獲國際AI溫室種植大賽亞軍

人工智慧技術在現代農業生產全階段的滲入,對推進農業的自動化、資訊化和智慧化,提升農業生產的質量與效率具有重要意義,但技術發展和應用並非一蹴而成。騰訊AI Lab團隊表示:“當年輕的人工智慧與古老的農業相碰撞時,會遇到諸多挑戰,如何預見和解決這些難題,需要耐心、創新,甚至是一些靈感。但其中蘊含的機遇也是巨大的,我們希望能有更多跨學科專家、企業家和投資者一起攜手,共同發掘AI+農業的各種可能性。”

相關文章