-
Let \(H\) be a subgroup of \(G\), if \(g\in G\), show tha
\[gHg^{-1}=\{g^{-1}hg\mid h\in H\} \]is also a subgroup of \(G\).
Proof: Since \(e~(\text{identity})\in gHg^{-1}\subseteq G\), \(gHg^{-1}\) is nonempty. For any \(g^{-1}h_1g,~g^{-1}h_2g\in gHg^{-1}\), note that\[(g^{-1}h_1g)(g^{-1}h_2g)^{-1}=g^{-1}h_1gg^{-1}h_2^{-1}g=g^{-1}h_1h_2^{-1}g, \]and \(h_1h_2^{-1}\in H\) by \(h_1,h_2\in H\le G\). It follows that \((g^{-1}h_1g)(g^{-1}h_2g)^{-1}\in gHg^{-1}\). Thus \(gHg^{-1}\le G\).
-
Let \(G\) be a group and \(g\in G\). Show that the center of \(G\): \(\mathcal Z(G)=\{x\in G\mid gx=xg,~g\in G\}\) is a subgroup of \(G\). And compute the center of \(GL_n(\mathbb R),SL_n(\mathbb R)\).
Proof: Clearly, the identity \(e\in\mathcal Z(G)\), i.e. \(\mathcal Z(G)\) is not empty. For any \(x_1,x_2\in\mathcal Z(G)\), we have \(gx_1=x_1g,~gx_2=x_2g\). Then\[g(x_1x_2^{-1})=x_1gx_2^{-1}=x_1gx_2^{-1}g^{-1}g=x_1g(gx_2)^{-1}g=x_1g(x_2g)^{-1}g=x_1gg^{-1}x_2^{-1}g=(x_1x_2^{-1})g. \]So \(x_1x_2^{-1}\in \mathcal Z(G)\). Thus \(\mathcal Z(G)\le G\).
(1) The center of \(GL_n(\mathbb R):~\mathcal Z(GL_n(\mathbb R))=\{cE\mid c\in\mathbb R,E ~\text{is the identity matrix}\}\).
- Let \(P\in\mathcal Z(GL_n(\mathbb R))\), then for any \(A\in GL_n(\mathbb R)\), we have \(AP=PA\). Suppose that \(A=\left(\begin{matrix} -1&0&\cdots&0\\0&1&\cdots&0\\\vdots&\vdots&&\vdots\\0&0&\cdots&1\end{matrix}\right)\in GL_n(\mathbb R)\), then by \(AP=PA\), we obtain that the first row and the first column of \(P\) are all \(0\) except the main diagonal element. Similarly, let \(A=(e_1,-e_2,\cdots,e_n),\cdots,(e_1,e_2,\cdots,-e_n)\), we can obtain that \(P\) is a diagonal matrix.
- Moreover, let \(A\) be a permutation elementary matrix. By simple calculation, we can obtain \(P=cE\), where \(E\) is the identity matrix and \(c\in\mathbb R\).
(2) The center of \(SL_n(\mathbb R):~\mathcal Z(SL_n(\mathbb R))=E\).
- \(|cE|=1\Rightarrow c=1\).
【Basic Abstract Algebra】Exercises for Section 2.2 — Subgroups
相關文章
- 【Basic Abstract Algebra】Exercises of Section 1.1
- 【Basic Abstract Algebra】Exercises for Section 1.2
- 【Basic Abstract Algebra】Exercises for Section 1.4
- 【Basic Abstract Algebra】Exercises for Section 1.3
- 【Basic Abstract Algebra】Exercises for Section 2.1 — Definitions and examples
- 【Basic Abstract Algebra】Exercises for Section 1.6 — The Chinese Remainder TheoremREMAI
- The Future of the English [Supplementary Exercises]
- HTML <section> 標籤HTML
- Games101-1 Linear AlgebraGAM
- Typescript basicTypeScript
- Basic Paxos
- <section>與<article> 區別
- A Proof of Golden Section of Fibonacci SequenceGo
- CUTLASS: Fast Linear Algebra in CUDA C++ASTC++
- TypeScript abstract 抽象類TypeScript抽象
- OpenAPI Basic StructureAPIStruct
- Visual Basic for ApplicationAPP
- Mach-O Inside: BSS SectionMacIDE
- artice與section的區別
- CNN (Convolutional Neural Networks) AbstractCNN
- static,private,final,abstract,protected
- 介面和抽象類 (abstract)抽象
- Chapter1 入門/Section 1.2APT
- Recommendation Systems Basic Notes
- Reinforcement Learning Basic Notes
- Machine Learning - Basic pointsMac
- numpy_torch_basic
- IPFS_basic_use
- 面試2.2面試
- 2.2 ADD CHECKPOINTTABLE
- 2.2-2.50
- 【譯】WebSocket協議——摘要(Abstract)Web協議
- 修飾符static和abstract
- 一個section加密的apk的分析加密APK
- 【Abaqus】*Solid Section定義複合材料Solid
- Basic Authorization 認證方法
- [Vue Form] Basic Select componentVueORM
- [Vue] Slots - 1. basicVue