【Basic Abstract Algebra】Exercises for Section 2.1 — Definitions and examples

只会加减乘除發表於2024-12-09
  1. Let \(G\) be a finite group. Then the order of an element \(g\) is the smallest number \(n\) such that \(g^n=e\). Show that the order of \(g\in G\) is finite group.
    Proof: Since \(G\) is a finite group, then \(|G|<\infty\). Let

    \[S=\left\{g^k\mid k\in\mathbb N\right\}. \]

    We have \(S\subseteq G\), so \(S\) is finite. Thus there must exists \(p,q\in\mathbb N,p<q\), such that \(g^p=g^q\Rightarrow g^{q-p}=e\), where \(e\) is the identity of \(G\). Therefore, we have \(n\le q-p\) by the definition of the order of an element \(g\). Since \(q-p\) is finite, the order of \(g\) is finite. #

  2. Let \(G\) be a group with order \(|G|=n\). \(S\) is a subset of \(G\), with \(|S|>\frac{n}{2}\). Show that for any \(g\in G\), there exists \(a,b\in S\) such that \(g=ab\).
    Proof: For any \(g\in G\), construct a map

    \[\begin{aligned} f:~~&G\to G\\ &h\mapsto h^{-1}g. \end{aligned} \]

    Note that for any \(h_1,h_2\in G\), let \(f(h_1)=f(h_2)\), we have

    \[h_1^{-1}g=h_2^{-1}g\Rightarrow h_1^{-1}=h_2^{-1}\Rightarrow h_1=h_2. \]

    Thus \(f\) is injective. On the other hand, for any \(h\in G\), \(\exists gh^{-1}\), such that \(f(gh^{-1})=(gh^{-1})^{-1}g=hg^{-1}g=h\). So \(f\) is surjective. Therefore, \(f\) is bijective.

    Suppose that \(f(S)\cap S^{-1}=\varnothing\), then \(|f(S)\cup S^{-1}|=|f(S)|+|S^{-1}|=2|S|\). However, \(f(S)\cup S^{-1}\subseteq G\), it follows that \(2|S|=|\mathscr l(S)\cup S^{-1}|\le |G|=n\Rightarrow |S|\le \frac{n}{2}\). \(\to\leftarrow\).

    Therefore, \(f(S)\cap S^{-1}\neq\varnothing\). Let \(b\in f(S)\cap S^{-1}\). Clearly, \(b\in S\). Then exists \(a\in S\), such that \(f(a)=b\Rightarrow a^{-1}g=b\), i.e. \(g=ab\). #

  3. Let \(a,b\) be two elements of a group \(G\), and \(aba=ba^2b,~a^3=1,~b^{2n-1}\). Then \(b=1\).
    Proof: \(aba=ba^2b\Rightarrow aba^3=ba^2ba^2\Rightarrow ab=ba^2ba^2\Rightarrow ab^2=ba^2ba^2b=ba^2aba=b^2a\). i.e. The element \(a\) commutes with \(b^2\). Thus

    \[ab^{2n}=a \underbrace{b^2b^2\cdots b^2}_{n個}=b^2a\underbrace{b^2\cdots b^2}_{n-1個}=\cdots=\underbrace{b^2b^2\cdots b^2}_{n個}a=b^{2n}a. \]

    Therefore, \(ab=ab^{2n-1}b=b^{2n-1}ba=ba\Rightarrow ba^2b=aba=ba^2\Rightarrow(ba^2)^{-1}(ba^2)b=(ba^2)^{-1}(ba^2)=1\), i.e. \(b=1\). #

相關文章