- Define a relation \(R\) on \(\mathbb R^2\) by stating that \((a,b)\sim(c,d)\) if and only if \(a^2+b^2\le c^2+d^2\). Show that \(\sim\) is reflexive and transitive, but itis not symmetric.
Solution: (1) Obviously, \((a,b)\sim(a,b)\), so \(\sim\) is reflexive.
(2) If \((a,b)\sim(c,d),~(c,d)\sim(e,f)\), then we have \(a^2+b^2\le c^2+d^2,~c^2+d^2\le e^2+f^2\). So \(a^2+b^2\le e^2+f^2\). Thus \((a,b)\sim(e,f)\), so \(\sim\) is transitive.
(3) Suppose \((a,b),~(c,d)\in \mathbb R^2\) and \(a^2+b^2< c^2+d^2\). Thus \((a,b)\sim (c,d)\). Since \(c^2+d^2>a^2+b^2\), \((c,d)\not\sim(a,b)\). Therefore, \(\sim\) is not symmetric. #
【Basic Abstract Algebra】Exercises for Section 1.3
相關文章
- 【Basic Abstract Algebra】Exercises of Section 1.1
- 【Basic Abstract Algebra】Exercises for Section 1.2
- oracle全文索引之SECTION GROUP_2_BASIC_SECTION_GROUPOracle索引
- The Future of the English [Supplementary Exercises]
- java abstractJava
- c# abstractC#
- oracle全文索引之SECTION GROUP_6_PATH_SECTION_GROUPOracle索引
- oracle全文索引之SECTION GROUP_5_AUTO_SECTION_GROUPOracle索引
- oracle全文索引之SECTION GROUP_4_XML_SECTION_GROUPOracle索引XML
- oracle全文索引之SECTION GROUP_3_HTML_SECTION_GROUPOracle索引HTML
- oracle全文索引之SECTION GROUP_1_NULL_SECTION_GROUPOracle索引Null
- HTML <section> 標籤HTML
- 1.3
- Typescript basicTypeScript
- TypeScript abstract 抽象類TypeScript抽象
- abstract類和介面
- java基礎:abstractJava
- Scala的Abstract Types
- Abstract Factory + Template = BuilderUI
- CUTLASS: Fast Linear Algebra in CUDA C++ASTC++
- <section>與<article> 區別
- Oracle AWR Top SQL sectionOracleSQL
- OpenAPI Basic StructureAPIStruct
- Docker-BasicDocker
- JUnit basic annotation
- Games101-1 Linear AlgebraGAM
- 介面和抽象類 (abstract)抽象
- C# interface abstract classC#
- abstract 的 interface ,如何理解?
- C#基礎——abstractC#
- artice與section的區別
- UVA 10655 Contemplation! Algebra (矩陣快速冪)矩陣
- IPFS_basic_use
- numpy_torch_basic
- 【譯】WebSocket協議——摘要(Abstract)Web協議
- Chapter1 入門/Section 1.2APT
- PE教程5: Section Table(節表)
- A Proof of Golden Section of Fibonacci SequenceGo