【Tensorflow_DL_Note17】CIFAR10程式碼使用過程中出現的錯誤及其解決辦法

馬衛飛發表於2018-06-18
1.AttributeError: 'module' object has noattribute 'random_crop'
解決方案:
將distorted_image= tf.image.random_crop(reshaped_image, [height, width])改為:
distorted_image  = tf.random_crop(reshaped_image,[height, width,3]

#2.AttributeError: module 'tensorflow.tools.api.generator.api.image' has no attribute 'per_image_whitening'
#將 float_image    = tf.image.per_image_whitening(distorted_image)改為:
#float_image    = tf.image.per_image_standardization(distorted_image)


#3.AttributeError: module 'tensorflow' has no attribute 'image_summary'
#將 tf.image_summary('images', images))改為:
#   tf.summary.image('images', images)

#4.AttributeError: module 'tensorflow' has no attribute 'histogram_summary'
#將tf.histogram_summary(tensor_name + '/activations', x) 改為:
#  tf.summary.histogram(tensor_name + '/activations', x) 

#5.AttributeError: module 'tensorflow' has no attribute 'scalar_summary'
#將tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) 改為:
# tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
#6.AttributeError: module 'tensorflow' has no attribute 'mul'
#將 weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')改為:
#   weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')

#7.ValueError: Shapes (2, 128, 1) and () are incompatible
#將concated           = tf.concat(1, [indices, sparse_labels])改為:
#  concated           = tf.concat([indices, sparse_labels], 1)
#7.ValueError: Only call `softmax_cross_entropy_with_logits` with named arguments (labels=..., logits=..., ...)
#將cifar10.loss(labels, logits)改為:
#cifar10.loss(logits=logits,labels=labels)
#將cross_entropy =tf.nn.softmax_cross_entropy_with_logits(logits,dense_labels,name='cross_entropy_per_example')改為:
#  cross_entropy =tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=dense_labels,name='cross_entropy_per_example')
#8.AttributeError: module 'tensorflow' has no attribute 'scalar_summary'
#將tf.scalar_summary('learning_rate', lr)改為:
#tf.summary.scalar('learning_rate', lr)
#8.TypeError: Using a `tf.Tensor` as a Python `bool` is not allowed. Use `if t is not None:` instead of `if t:` to test if a tensor is
#  defined, and use TensorFlow ops such as tf.cond to execute subgrap
#if grad: 改為  if grad is not None:
#8.AttributeError: module 'tensorflow.tools.api.generator.api.train' has no attribute 'SummaryWriter'
#將summary_writer = tf.train.SummaryWriter(FLAGS.train_dir,graph_def=sess.graph_def)改為:
#summary_writer = tf.summary.FileWriter(FLAGS.train_dir,graph_def=sess.graph_def)


前言:相關環境搭建

TF(tensorflow)安裝之python

tensorflow 之 bazel安裝 & 使用

Python的庫sklearn安裝 & bazel安裝 & cmake


GBDT安裝(xgboost LightGBM)

GBDT 之 Boosting方法

linux export 環境變數設定


一:Tersorflow CIFAR-10 訓練示例報錯及解決方案(1)

1.AttributeError:'module' object has noattribute 'random_crop'

##解決方案:

將distorted_image= tf.image.random_crop(reshaped_image,[height, width])改為:

distorted_image = tf.random_crop(reshaped_image,[height,width,3])


2.  AttributeError:'module'object has no attribute 'SummaryWriter'

##解決方案:tf.train.SummaryWriter改為:tf.summary.FileWriter


3.  AttributeError:'module'object has no attribute 'summaries'

解決方案:  tf.merge_all_summaries()改為:summary_op =tf.summaries.merge_all()


4. AttributeError: 'module' object hasno attribute'histogram_summary

tf.histogram_summary(var.op.name,var)改為: tf.summaries.histogram()


5. AttributeError: 'module' object hasno attribute'scalar_summary'

tf.scalar_summary(l.op.name+ ' (raw)', l)

##解決方案:

tf.scalar_summary('images',images)改為:tf.summary.scalar('images', images)

tf.image_summary('images',images)改為:tf.summary.image('images', images)


6. ValueError: Only call`softmax_cross_entropy_with_logits` withnamed arguments (labels=...,logits=..., ...)

##解決方案:

  cifar10.loss(labels, logits) 改為:cifar10.loss(logits=logits,labels=labels)

 cross_entropy=tf.nn.softmax_cross_entropy_with_logits(

        logits,dense_labels,name='cross_entropy_per_example')

改為:

  cross_entropy =tf.nn.softmax_cross_entropy_with_logits(

       logits=logits, labels=dense_labels,name='cross_entropy_per_example')


7. TypeError: Using a `tf.Tensor` as a Python `bool`isnot allowed. Use `if t is not None:` instead of `if t:` to test if a tensorisdefined, and use TensorFlow ops such as tf.cond to execute subgraphsconditionedon the value of a tensor.

##解決方案:

if grad: 改為  if grad is not None:


8. ValueError: Shapes (2, 128, 1) and () are incompatible

###解決方案:

concated = tf.concat(1, [indices, sparse_labels])改為:

concated= tf.concat([indices, sparse_labels], 1)


9. 報錯:(這個暫時沒有遇到)

File"/home/lily/work/Tensorflow/CIRFAR-10/tensorflow.cifar10-master/cifar10_input.py",line83, in read_cifar10

    result.key, value=reader.read(filename_queue)

 File"/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/io_ops.py",line326, in read

queue_ref = queue.queue_ref

AttributeError: 'str' object hasno attribute 'queue_ref'

###解決方案:

由於訓練樣本的路徑需要修改,給cifar10_input.py中data_dir賦值為本地資料所在的資料夾

以上參考自 http://blog.csdn.net/xiao_lxl/article/details/70622209

二:Tersorflow CIFAR-10 訓練示例報錯及解決方案(2)

1,File"tensorflow/models/slim/preprocessing/cifarnet_preproces.py", line70, in preprocess_for_train

return tf.image.per_image_whitening(distorted_image)
AttributeError: 'module' object has no attribute'per_image_whitening'


2,tensorflow:AttributeError: 'module' object has noattribute 'mul'


3,bin/im2txt/evaluate.runfiles/im2txt/im2txt/evaluate.py",line 174, in run summary_op = tf.merge_all_summaries() AttributeError: 'module'object has no attribute 'merge_all_summaries'

What can I do for this?



三:結束語

公共學習,共同攻克cnn,如有不妥之處歡迎留言。


目錄:

1,機器學習 & MR

Hadoop進階(hadoop streaming c++實現 & MapReduce引數調優)

hadoop streaming (shell執行 & combiner & 資料分割)

hadoop streaming python 處理 lzo 檔案遇到的問題

spark安裝與除錯

推薦演算法之Jaccard相似度與Consine相似度

LibLinear使用總結

深度學習在推薦領域的應用 

2,tensorflow 安轉與使用

Tersorflow深度學習入門—— CIFAR-10 訓練示例報錯及解決方案

tensorflow 之 bazel安裝 & 使用

Python的庫sklearn安裝 & bazel安裝 & cmake

TF(tensorflow)安裝之python

GBDT 之 Boosting方法

GBDT安裝(xgboost LightGBM),

3,工具安裝

linux export 環境變數設定   

urlencode & quote & unquote (url 中帶中文引數)  

linux crontab -e報錯

configure --prefix=/ & yum install 路徑

rethat / CentOS環境配置

redis 值 hiredis (c/c++)

前言:相關環境搭建

TF(tensorflow)安裝之python

tensorflow 之 bazel安裝 & 使用

Python的庫sklearn安裝 & bazel安裝 & cmake


GBDT安裝(xgboost LightGBM)

GBDT 之 Boosting方法

linux export 環境變數設定


一:Tersorflow CIFAR-10 訓練示例報錯及解決方案(1)

1.AttributeError:'module' object has noattribute 'random_crop'

##解決方案:

將distorted_image= tf.image.random_crop(reshaped_image,[height, width])改為:

distorted_image = tf.random_crop(reshaped_image,[height,width,3])


2.  AttributeError:'module'object has no attribute 'SummaryWriter'

##解決方案:tf.train.SummaryWriter改為:tf.summary.FileWriter


3.  AttributeError:'module'object has no attribute 'summaries'

解決方案:  tf.merge_all_summaries()改為:summary_op =tf.summaries.merge_all()


4. AttributeError: 'module' object hasno attribute'histogram_summary

tf.histogram_summary(var.op.name,var)改為: tf.summaries.histogram()


5. AttributeError: 'module' object hasno attribute'scalar_summary'

tf.scalar_summary(l.op.name+ ' (raw)', l)

##解決方案:

tf.scalar_summary('images',images)改為:tf.summary.scalar('images', images)

tf.image_summary('images',images)改為:tf.summary.image('images', images)


6. ValueError: Only call`softmax_cross_entropy_with_logits` withnamed arguments (labels=...,logits=..., ...)

##解決方案:

  cifar10.loss(labels, logits) 改為:cifar10.loss(logits=logits,labels=labels)

 cross_entropy=tf.nn.softmax_cross_entropy_with_logits(

        logits,dense_labels,name='cross_entropy_per_example')

改為:

  cross_entropy =tf.nn.softmax_cross_entropy_with_logits(

       logits=logits, labels=dense_labels,name='cross_entropy_per_example')


7. TypeError: Using a `tf.Tensor` as a Python `bool`isnot allowed. Use `if t is not None:` instead of `if t:` to test if a tensorisdefined, and use TensorFlow ops such as tf.cond to execute subgraphsconditionedon the value of a tensor.

##解決方案:

if grad: 改為  if grad is not None:


8. ValueError: Shapes (2, 128, 1) and () are incompatible

###解決方案:

concated = tf.concat(1, [indices, sparse_labels])改為:

concated= tf.concat([indices, sparse_labels], 1)


9. 報錯:(這個暫時沒有遇到)

File"/home/lily/work/Tensorflow/CIRFAR-10/tensorflow.cifar10-master/cifar10_input.py",line83, in read_cifar10

    result.key, value=reader.read(filename_queue)

 File"/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/io_ops.py",line326, in read

queue_ref = queue.queue_ref

AttributeError: 'str' object hasno attribute 'queue_ref'

###解決方案:

由於訓練樣本的路徑需要修改,給cifar10_input.py中data_dir賦值為本地資料所在的資料夾

以上參考自 http://blog.csdn.net/xiao_lxl/article/details/70622209

二:Tersorflow CIFAR-10 訓練示例報錯及解決方案(2)

1,File"tensorflow/models/slim/preprocessing/cifarnet_preproces.py", line70, in preprocess_for_train

return tf.image.per_image_whitening(distorted_image)
AttributeError: 'module' object has no attribute'per_image_whitening'


2,tensorflow:AttributeError: 'module' object has noattribute 'mul'


3,bin/im2txt/evaluate.runfiles/im2txt/im2txt/evaluate.py",line 174, in run summary_op = tf.merge_all_summaries() AttributeError: 'module'object has no attribute 'merge_all_summaries'

What can I do for this?



三:結束語

公共學習,共同攻克cnn,如有不妥之處歡迎留言。


目錄:

1,機器學習 & MR

Hadoop進階(hadoop streaming c++實現 & MapReduce引數調優)

hadoop streaming (shell執行 & combiner & 資料分割)

hadoop streaming python 處理 lzo 檔案遇到的問題

spark安裝與除錯

推薦演算法之Jaccard相似度與Consine相似度

LibLinear使用總結

深度學習在推薦領域的應用 

2,tensorflow 安轉與使用

Tersorflow深度學習入門—— CIFAR-10 訓練示例報錯及解決方案

tensorflow 之 bazel安裝 & 使用

Python的庫sklearn安裝 & bazel安裝 & cmake

TF(tensorflow)安裝之python

GBDT 之 Boosting方法

GBDT安裝(xgboost LightGBM),

3,工具安裝

linux export 環境變數設定   

urlencode & quote & unquote (url 中帶中文引數)  

linux crontab -e報錯

configure --prefix=/ & yum install 路徑

rethat / CentOS環境配置

redis 值 hiredis (c/c++)


以下報錯主要是由於TensorFlow升級1.0後與以前程式碼不相容所致。

1.AttributeError: 'module' object has noattribute 'random_crop'

解決方案:

將distorted_image= tf.image.random_crop(reshaped_image, [height, width])改為:

distorted_image = tf.random_crop(reshaped_image,[height, width,3])

 

2.  AttributeError: 'module'object has no attribute 'SummaryWriter'

解決方案:

tf.train.SummaryWriter改為:tf.summary.FileWriter

 

3.  AttributeError: 'module'object has no attribute 'summaries'

解決方案:

 tf.merge_all_summaries()改為:summary_op =tf.summaries.merge_all()

 


4. AttributeError: 'module' object hasno attribute 'histogram_summary'

tf.histogram_summary(var.op.name,var)改為:  tf.summaries.histogram()

 


5. AttributeError: 'module' object hasno attribute 'scalar_summary'

tf.scalar_summary(l.op.name+ ' (raw)', l)

解決方案:

tf.scalar_summary('images',images)改為:tf.summary.scalar('images', images)

tf.image_summary('images',images)改為:tf.summary.image('images', images)

 

6. ValueError: Only call `softmax_cross_entropy_with_logits` withnamed arguments (labels=..., logits=..., ...)

解決方案:

   cifar10.loss(labels, logits) 改為:cifar10.loss(logits=logits,labels=labels)

 cross_entropy= tf.nn.softmax_cross_entropy_with_logits(
        logits, dense_labels,name='cross_entropy_per_example')

改為:

  cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        logits=logits, labels=dense_labels,name='cross_entropy_per_example')

 

7. TypeError: Using a `tf.Tensor` as a Python `bool` isnot allowed. Use `if t is not None:` instead of `if t:` to test if a tensor isdefined, and use TensorFlow ops such as tf.cond to execute subgraphsconditioned on the value of a tensor.

解決方案:

if grad: 改為  if grad is not None:

 

8. ValueError: Shapes (2, 128, 1) and () are incompatible

解決方案:

concated = tf.concat(1, [indices, sparse_labels])改為:

concated= tf.concat([indices, sparse_labels], 1)

 

9. 報錯:

File"/home/lily/work/Tensorflow/CIRFAR-10/tensorflow.cifar10-master/cifar10_input.py",line 83, in read_cifar10

    result.key, value =reader.read(filename_queue)

  File"/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/io_ops.py",line 326, in read

queue_ref = queue.queue_ref

AttributeError: 'str' object hasno attribute 'queue_ref'


解決方案:

由於訓練樣本的路徑需要修改,給cifar10_input.py中data_dir賦值為本地資料所在的資料夾


AttributeError: 'module' object has no attribute 'SummaryWriter'

tf.train.SummaryWriter改為:tf.summary.FileWriter


AttributeError: 'module' object has no attribute 'summaries'

 tf.merge_all_summaries()改為:summary_op = tf.summaries.merge_all()


tf.histogram_summary(var.op.name, var)
AttributeError: 'module' object has no attribute 'histogram_summary'

改為:  tf.summaries.histogram()


tf.scalar_summary(l.op.name + ' (raw)', l)
AttributeError: 'module' object has no attribute 'scalar_summary'


tf.scalar_summary('images', images)改為:tf.summary.scalar('images', images)

tf.image_summary('images', images)改為:tf.summary.image('images', images)


ValueError: Only call `softmax_cross_entropy_with_logits` with named arguments (labels=..., logits=..., ...)

    cifar10.loss(labels, logits) 改為:cifar10.loss(logits=logits, labels=labels)

 cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        logits, dense_labels, name='cross_entropy_per_example')

改為:

   cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        logits=logits, labels=dense_labels, name='cross_entropy_per_example')


TypeError: Using a `tf.Tensor` as a Python `bool` is not allowed. Use `if t is not None:` instead of `if t:` to test if a tensor is defined, and use TensorFlow ops such as tf.cond to execute subgraphs conditioned on the value of a tensor.

if grad: 改為  if grad is not None:


ValueError: Shapes (2, 128, 1) and () are incompatible

concated = tf.concat(1, [indices, sparse_labels])改為:

concated = tf.concat([indices, sparse_labels], 1)


tensorflow1.0

主要 API 改進

BusAdjacency 列舉被協議緩衝 DeviceLocality 代替。匯流排索引現在從 1 而不是 0 開始,同時,使用 bus_id==0,之前為 BUS_ANY。

Env::FileExists 和 FileSystem::FileExists 現在返回 tensorflow::Status 而不是一個 bool。任何此函式的呼叫者都可以通過向呼叫新增.ok()將返回轉換為 bool。

C API:TF_SessionWithGraph 型別更名為 TF_Session,其在 TensorFlow 的繫結語言中成為首選。原來的 TF_Session 已更名為 TF_DeprecatedSession。

C API: TF_Port 被更名為 TF_Output。

C API: 呼叫者保留提供給 TF_Run、 TF_SessionRun、TF_SetAttrTensor 等的 TF_Tensor 物件的所有權。

將 tf.image.per_image_whitening() 更名為 tf.image.per_image_standardization()。

將 Summary protobuf 建構函式移動到了 tf.summary 子模組。

不再使用 histogram_summary、audio_summary、 scalar_summary,image_summary、merge_summary 和 merge_all_summaries。

組合 batch_ *和常規版本的線性代數和 FFT 運算。常規運算現在也處理批處理。所有 batch_ * Python 介面已刪除。

tf.all_variables,tf.VARIABLES 和 tf.initialize_all_variables 更名為 tf.global_variables,tf.GLOBAL_VARIABLES 和 tf.global_variable_initializers respectively。




前言:相關環境搭建

TF(tensorflow)安裝之python

tensorflow 之 bazel安裝 & 使用

Python的庫sklearn安裝 & bazel安裝 & cmake


GBDT安裝(xgboost LightGBM)

GBDT 之 Boosting方法

linux export 環境變數設定


一:Tersorflow CIFAR-10 訓練示例報錯及解決方案(1)

1.AttributeError:'module' object has noattribute 'random_crop'

##解決方案:

將distorted_image= tf.image.random_crop(reshaped_image,[height, width])改為:

distorted_image = tf.random_crop(reshaped_image,[height,width,3])


2.  AttributeError:'module'object has no attribute 'SummaryWriter'

##解決方案:tf.train.SummaryWriter改為:tf.summary.FileWriter


3.  AttributeError:'module'object has no attribute 'summaries'

解決方案:  tf.merge_all_summaries()改為:summary_op =tf.summaries.merge_all()


4. AttributeError: 'module' object hasno attribute'histogram_summary

tf.histogram_summary(var.op.name,var)改為: tf.summaries.histogram()


5. AttributeError: 'module' object hasno attribute'scalar_summary'

tf.scalar_summary(l.op.name+ ' (raw)', l)

##解決方案:

tf.scalar_summary('images',images)改為:tf.summary.scalar('images', images)

tf.image_summary('images',images)改為:tf.summary.image('images', images)


6. ValueError: Only call`softmax_cross_entropy_with_logits` withnamed arguments (labels=...,logits=..., ...)

##解決方案:

  cifar10.loss(labels, logits) 改為:cifar10.loss(logits=logits,labels=labels)

 cross_entropy=tf.nn.softmax_cross_entropy_with_logits(

        logits,dense_labels,name='cross_entropy_per_example')

改為:

  cross_entropy =tf.nn.softmax_cross_entropy_with_logits(

       logits=logits, labels=dense_labels,name='cross_entropy_per_example')


7. TypeError: Using a `tf.Tensor` as a Python `bool`isnot allowed. Use `if t is not None:` instead of `if t:` to test if a tensorisdefined, and use TensorFlow ops such as tf.cond to execute subgraphsconditionedon the value of a tensor.

##解決方案:

if grad: 改為  if grad is not None:


8. ValueError: Shapes (2, 128, 1) and () are incompatible

###解決方案:

concated = tf.concat(1, [indices, sparse_labels])改為:

concated= tf.concat([indices, sparse_labels], 1)


9. 報錯:(這個暫時沒有遇到)

File"/home/lily/work/Tensorflow/CIRFAR-10/tensorflow.cifar10-master/cifar10_input.py",line83, in read_cifar10

    result.key, value=reader.read(filename_queue)

 File"/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/io_ops.py",line326, in read

queue_ref = queue.queue_ref

AttributeError: 'str' object hasno attribute 'queue_ref'

###解決方案:

由於訓練樣本的路徑需要修改,給cifar10_input.py中data_dir賦值為本地資料所在的資料夾

以上參考自 http://blog.csdn.net/xiao_lxl/article/details/70622209

二:Tersorflow CIFAR-10 訓練示例報錯及解決方案(2)

1,File"tensorflow/models/slim/preprocessing/cifarnet_preproces.py", line70, in preprocess_for_train

return tf.image.per_image_whitening(distorted_image)
AttributeError: 'module' object has no attribute'per_image_whitening'


2,tensorflow:AttributeError: 'module' object has noattribute 'mul'


3,bin/im2txt/evaluate.runfiles/im2txt/im2txt/evaluate.py",line 174, in run summary_op = tf.merge_all_summaries() AttributeError: 'module'object has no attribute 'merge_all_summaries'

What can I do for this?



三:結束語

公共學習,共同攻克cnn,如有不妥之處歡迎留言。


目錄:

1,機器學習 & MR

Hadoop進階(hadoop streaming c++實現 & MapReduce引數調優)

hadoop streaming (shell執行 & combiner & 資料分割)

hadoop streaming python 處理 lzo 檔案遇到的問題

spark安裝與除錯

推薦演算法之Jaccard相似度與Consine相似度

LibLinear使用總結

深度學習在推薦領域的應用 

2,tensorflow 安轉與使用

Tersorflow深度學習入門—— CIFAR-10 訓練示例報錯及解決方案

tensorflow 之 bazel安裝 & 使用

Python的庫sklearn安裝 & bazel安裝 & cmake

TF(tensorflow)安裝之python

GBDT 之 Boosting方法

GBDT安裝(xgboost LightGBM),

3,工具安裝

linux export 環境變數設定   

urlencode & quote & unquote (url 中帶中文引數)  

linux crontab -e報錯

configure --prefix=/ & yum install 路徑

rethat / CentOS環境配置

redis 值 hiredis (c/c++)

相關文章