深入講解拉鍊表,還怕面試官問?

mpsky發表於2021-09-09

前言

         今天給大家分享一個面試中經常會被問到的拉鍊表,我在上篇文章中提出來一個需求如果不知道的請去→檢視,好,廢話不多說我們直接開始。提出的問題會在末尾講解。

圖片描述

一、拉鍊表介紹(百度百科)

         拉鍊表:維護歷史狀態,以及最新狀態資料的一種表,拉鍊表根據拉鍊粒度的不同,實際上相當於快照,只不過做了最佳化,去除了一部分不變的記錄,透過拉鍊表可以很方便的還原出拉鍊時點的客戶記錄

二、拉鍊表場景

         資料倉儲的資料模型設計過程中,經常會遇到這樣的需求:

  1. 表中的部分欄位會被update,例如:
    使用者的地址,產品的描述資訊,品牌資訊等等;
  2. 需要檢視某一個時間點或者時間段的歷史快照資訊,例如:
    檢視某一個產品在歷史某一時間點的狀態
    檢視某一個使用者在過去某一段時間內,更新過幾次等等
  3. 變化的比例和頻率不是很大,例如:
    總共有1000萬的會員,每天新增和發生變化的有10萬左右

三、商品資料案例

需求
商品表

列名 型別 說明
goods_id varchar(50) 商品編號
goods_status varchar(50) 商品狀態(待稽核、待售、在售、已刪除)
createtime varchar(50) 商品建立日期
modifytime varchar(50) 商品修改日期

2019年12月20日的資料如下所示:

goods_id goods_status createtime modifytime
001 待稽核 2019-12-20 2019-12-20
002 待售 2019-12-20 2019-12-20
003 在售 2019-12-20 2019-12-20
004 已刪除 2019-12-20 2019-12-20

         商品的狀態,會隨著時間推移而變化,我們需要將商品的所有變化的歷史資訊都儲存下來。如何實現呢?

方案一: 快照每一天的資料到數倉(圖解)

該方案為:

  • 每一天都儲存一份全量,將所有資料同步到數倉中(我這裡就使用MySQL操作的
  • 很多記錄都是重複儲存,沒有任何變化

12月20日(4條資料)

goods_id goods_status createtime modifytime
001 待稽核 2019-12-18 2019-12-20
002 待售 2019-12-19 2019-12-20
003 在售 2019-12-20 2019-12-20
004 已刪除 2019-12-15 2019-12-20

12月21日(10條資料)

goods_id goods_status createtime modifytime
以下為12月20日快照資料
001 待稽核 2019-12-18 2019-12-20
002 待售 2019-12-19 2019-12-20
003 在售 2019-12-20 2019-12-20
004 已刪除 2019-12-15 2019-12-20
以下為12月21日快照資料
001 待售(從待稽核到待售) 2019-12-18 2019-12-21
002 待售 2019-12-19 2019-12-20
003 在售 2019-12-20 2019-12-20
004 已刪除 2019-12-15 2019-12-20
005(新商品) 待稽核 2019-12-21 2019-12-21
006(新商品) 待稽核 2019-12-21 2019-12-21

12月22日(18條資料)

goods_id goods_status createtime modifytime
以下為12月20日快照資料
001 待稽核 2019-12-18 2019-12-20
002 待售 2019-12-19 2019-12-20
003 在售 2019-12-20 2019-12-20
004 已刪除 2019-12-15 2019-12-20
以下為12月21日快照資料
001 待售(從待稽核到待售) 2019-12-18 2019-12-21
002 待售 2019-12-19 2019-12-20
003 在售 2019-12-20 2019-12-20
004 已刪除 2019-12-15 2019-12-20
005 待稽核 2019-12-21 2019-12-21
006 待稽核 2019-12-21 2019-12-21
以下為12月22日快照資料
001 待售 2019-12-18 2019-12-21
002 待售 2019-12-19 2019-12-20
003 已刪除(從在售到已刪除) 2019-12-20 2019-12-22
004 待稽核 2019-12-21 2019-12-21
005 待稽核 2019-12-21 2019-12-21
006 已刪除(從待稽核到已刪除) 2019-12-21 2019-12-22
007 待稽核 2019-12-22 2019-12-22
008 待稽核 2019-12-22 2019-12-22

方案一: MySQL到,MySQL數倉程式碼實現

MySQL初始化

  1. 在MySQL中zw庫和商品表用於到原始資料層
-- 建立資料庫
create database if not exists zw;
-- 建立商品表
create table if not exists `zw`.`t_product`(
goods_id varchar(50), -- 商品編號
 goods_status varchar(50), -- 商品狀態
 createtime varchar(50), -- 商品建立時間
 modifytime varchar(50) -- 商品修改時間
);
  1. 在MySQL中建立ods和dw層 模擬數倉
-- ods建立商品表
create table if not exists `zw`.`ods_t_product`(
goods_id varchar(50), -- 商品編號
 goods_status varchar(50), -- 商品狀態
 createtime varchar(50), -- 商品建立時間
 modifytime varchar(50), -- 商品修改時間
cdat varchar(10)   --模擬hive分割槽
)default character set = 'utf8'; ;
-- dw建立商品表
create table if not exists `zw`.`dw_t_product`(
goods_id varchar(50), -- 商品編號
 goods_status varchar(50), -- 商品狀態
 createtime varchar(50), -- 商品建立時間
 modifytime varchar(50), -- 商品修改時間
 cdat varchar(10)  -- 模擬hive分割槽
)default character set = 'utf8'; ;

增量匯入12月20號資料

  1. 原始資料匯入12月20號資料(4條)
insert into `zw`.`t_product`(goods_id, goods_status, createtime, modifytime) values
('001', '待稽核', '2019-12-18', '2019-12-20'),
('002', '待售', '2019-12-19', '2019-12-20'),
('003', '在售', '2019-12-20', '2019-12-20'),
('004', '已刪除', '2019-12-15', '2019-12-20');

注意: 由於我這裡使用的MySQL來模擬的數倉在這裡偷個懶直接使用insert into的方式匯入資料,在企業中可能會使用hive來做數倉使用kettle 或者sqoop或datax等來同步資料

# 從原始資料層匯入到ods 層
insert into zw.ods_t_product
select *,'20191220' from zw.t_product ;
# 從ods同步到dw層
insert into zw.dw_t_product
select * from zw.ods_t_product where cdat='20191220';

增量匯入12月21資料

  1. 原始資料層匯入12月21日資料(6條資料)
UPDATE `zw`.`t_product` SET goods_status = '待售', modifytime = '2019-12-21' WHERE goods_id = '001';
INSERT INTO `zw`.`t_product`(goods_id, goods_status, createtime, modifytime) VALUES
('005', '待稽核', '2019-12-21', '2019-12-21'),
('006', '待稽核', '2019-12-21', '2019-12-21');
  1. 將資料匯入到ods層與dw層
# 從原始資料層匯入到ods 層
insert into zw.ods_t_product
select *,'20191221' from zw.t_product ;
# 從ods同步到dw層
insert into zw.dw_t_product
select * from zw.ods_t_product where cdat='20191221';
  1. 檢視dw層的執行結果
select * from zw.dw_t_product where cdat='20191221';

增量匯入12月22日資料

  1. 原始資料層匯入12月22日資料(6條資料)
UPDATE `zw`.`t_product` SET goods_status = '已刪除', modifytime = '2019-12-22' WHERE goods_id = '003';
UPDATE `zw`.`t_product` SET goods_status = '已刪除', modifytime = '2019-12-22' WHERE goods_id = '006';
INSERT INTO `zw`.`t_product`(goods_id, goods_status, createtime, modifytime) VALUES
('007', '待稽核', '2019-12-22', '2019-12-22'),
('008', '待稽核', '2019-12-22', '2019-12-22');
  1. 將資料匯入到ods層與dw層
# 從原始資料層匯入到ods 層
insert into zw.ods_t_product
select *,'20191222' from zw.t_product ;
# 從ods同步到dw層
insert into zw.dw_t_productpeizhiwenjian
select * from zw.ods_t_product where cdat='20191222';
  1. 檢視dw層的執行結果
select * from zw.dw_t_product where cdat='20191222';

從上述案例,可以看到:
         表每天保留一份全量,每次全量中會儲存很多不變的資訊如果資料量很大的話,對儲存是極大的浪費
         可以講表設計為拉鍊表,既能滿足反應資料的歷史狀態,又可以最大限度地節省儲存空間。

方案二: 使用拉鍊表儲存歷史快照(思路/圖解)

  • 拉鍊表不儲存冗餘的資料,只有某行的資料發生變化,才需要儲存下來,相比每次全量同步會節省儲存空間
  • 能夠查詢到歷史快照
  • 額外的增加了兩列(dw_start_datedw_end_date),為資料行的生命週期

12月20日商品拉鍊表的資料:

goods_id goods_status createtime modifytime dw_start_date dw_end_date
001 待稽核 2019-12-18 2019-12-20 2019-12-20 9999-12-31
002 待售 2019-12-19 2019-12-20 2019-12-20 9999-12-31
003 在售 2019-12-20 2019-12-20 2019-12-20 9999-12-31
004 已刪除 2019-12-15 2019-12-20 2019-12-20 9999-12-31

         12月20日的資料是全新的資料匯入到dw表

  • dw_start_date表示某一條資料的生命週期起始時間,即資料從該時間開始有效(即生效日期
  • dw_end_date表示某一條資料的生命週期結束時間,即資料到這一天(不包含)(即失效日期
  • dw_end_date為9999-12-31,表示當前這條資料是最新的資料,資料到9999-12-31才過期

12月21日商品拉鍊表的資料

goods_id goods_status createtime modifytime dw_start_date dw_end_date
001 待稽核 2019-12-18 2019-12-20 2019-12-20 2019-12-21
002 待售 2019-12-19 2019-12-20 2019-12-20 9999-12-31
003 在售 2019-12-20 2019-12-20 2019-12-20 9999-12-31
004 已刪除 2019-12-15 2019-12-20 2019-12-20 9999-12-31
001(變) 待售 2019-12-18 2019-12-21 2019-12-21 9999-12-31
005(新) 待稽核 2019-12-21 2019-12-21 2019-12-21 9999-12-31

         12月21日商品拉鍊表的資料

  • 拉鍊表中沒有儲存冗餘的資料,(只要資料沒有變化,無需同步
  • 001編號的商品資料的狀態發生了變化(從待稽核待售),需要將原有的dw_end_date從9999-12-31變為2019-12-21,表示待稽核狀態,在2019/12/20(包含) - 2019/12/21(不包含)有效
  • 001編號新的狀態重新儲存了一條記錄,dw_start_date為2019/12/21,dw_end_date為9999/12/31
  • 新資料005、006、dw_start_date為2019/12/21,dw_end_date為9999/12/31

12月22日商品拉鍊表的資料

goods_id goods_status createtime modifytime dw_start_date dw_end_date
001 待稽核 2019-12-18 2019-12-20 2019-12-20 2019-12-21
002 待售 2019-12-19 2019-12-20 2019-12-20 9999-12-31
003 在售 2019-12-20 2019-12-20 2019-12-20 2019-12-22
004 已刪除 2019-12-15 2019-12-20 2019-12-20 9999-12-31
001 待售 2019-12-18 2019-12-21 2019-12-21 9999-12-31
005 待稽核 2019-12-21 2019-12-21 2019-12-21 9999-12-31
006 待稽核 2019-12-21 2019-12-21 2019-12-21 9999-12-31
003(變) 已刪除 2019-12-20 2019-12-22 2019-12-22 9999-12-31
007(新) 待稽核 2019-12-22 2019-12-22 2019-12-22 9999-12-31
008(新) 待稽核 2019-12-22 2019-12-22 2019-12-22 9999-12-31

         12月22日商品拉鍊表的資料

  • 003編號的商品資料的狀態發生了變化(從在售→已刪除),需要將原有的 dw_end_date從9999-12-31變為2019-12-22,表示在售狀態,在2019/12/20(包含) - 2019/12/22(不包含) 有效
  • 003編號新的狀態重新儲存了一條記錄,dw_start_date為2019/12/22,dw_end_date為9999/12/31
  • 新資料007、008、dw_start_date為2019/12/22,dw_end_date為9999/12/31

方案二: 拉鍊錶快照程式碼實現

操作流程:

  1. 在原有dw層表上,新增額外的兩列
  2. 只同步當天修改的資料到ods層
  3. 拉鍊表演算法實現
  4. 拉鍊表的資料為:當天最新的資料 UNION ALL 歷史資料

程式碼實現:

  1. 在MySQL中zw庫和商品表用於到原始資料層
-- 建立資料庫
create database if not exists zw;

-- 建立商品表
create table if not exists `zw`.`t_product_2`(
goods_id varchar(50), -- 商品編號
goods_status varchar(50), -- 商品狀態
 createtime varchar(50), -- 商品建立時間
 modifytime varchar(50) -- 商品修改時間
)default character set = 'utf8';
  1. 在MySQL中建立ods和dw層 模擬數倉
-- ods建立商品表
create table if not exists `zw`.`ods_t_product2`(
goods_id varchar(50), -- 商品編號
 goods_status varchar(50), -- 商品狀態
 createtime varchar(50), -- 商品建立時間
 modifytime varchar(50), -- 商品修改時間
cdat varchar(10)   -- 模擬hive分割槽
)default character set = 'utf8';
-- dw建立商品表
create table if not exists `zw`.`dw_t_product2`(
goods_id varchar(50), -- 商品編號
 goods_status varchar(50), -- 商品狀態
 createtime varchar(50), -- 商品建立時間
 modifytime varchar(50), -- 商品修改時間
 dw_start_date varchar(12), --  生效日期
 dw_end_date varchar(12), -- 失效時間
 cdat varchar(10)  -- 模擬hive分割槽
)default character set = 'utf8'; 

全量匯入2019年12月20日資料

  1. 原始資料層匯入12月20日資料(4條資料)
insert into `zw`.`t_product_2`(goods_id, goods_status, createtime, modifytime) values
('001', '待稽核', '2019-12-18', '2019-12-20'),
('002', '待售', '2019-12-19', '2019-12-20'),
('003', '在售', '2019-12-20', '2019-12-20'),
('004', '已刪除', '2019-12-15', '2019-12-20');
  1. 將資料匯入到數倉中的ods層
insert into zw.ods_t_product2
select *,'20191220' from zw.t_product_2 where modifytime >='2019-12-20'
  1. 將資料從ods層匯入到dw層
insert into zw.dw_t_product2
select goods_id, goods_status, createtime, modifytime, modifytime,'9999-12-31', cdat from zw.ods_t_product2 where cdat='20191220'

增量匯入2019年12月21日資料

  1. 原始資料層匯入12月21日資料(6條資料)
UPDATE `zw`.`t_product_2` SET goods_status = '待售', modifytime = '2019-12-21' WHERE goods_id = '001';
INSERT INTO `zw`.`t_product_2`(goods_id, goods_status, createtime, modifytime) VALUES
('005', '待稽核', '2019-12-21', '2019-12-21'),
('006', '待稽核', '2019-12-21', '2019-12-21');
  1. 原始資料層同步到ods層
insert into zw.ods_t_product2
select *,'20191221' from zw.t_product_2 where modifytime >='2019-12-21';
  1. 編寫ods層到dw層重新計算 dw_end_date

注意: 我這裡直接將結果的SQL語句放在這裡語句 因為需要將覆蓋寫入到資料庫中我這裡就沒有寫了,但是不影響我們結果。12月22 號的操作流程跟21 一樣我就裡就不寫了

select t1.goods_id, t1.goods_status, t1.createtime, t1.modifytime,
       t1.dw_start_date,
       case when (t2.goods_id is not null and t1.dw_end_date>'2019-12-21') then '2019-12-21'else t1.dw__date end as end ,
       t1.cdat
from zw.dw_t_product2 t1
left join (select * from zw.ods_t_product2 where cdat='20191221')t2 on t1.goods_id=t2.goods_id
union
select goods_id, goods_status, createtime, modifytime, modifytime,'9999-12-31', cdat from zw.ods_t_product2 where cdat='20191221'
  1. 查詢結果
    圖片描述

總結

         到這裡我們終於將拉鍊表實現完了,雖然實現拉鍊表這個功能有點複雜有點繞,但是它真的幫助我們節省很多的資源,以公司層面難道不選它嗎,也就為什麼面試數倉的時候基本上都會問拉鍊表的原因。很多小夥伴對dw_start_dateds_end_date有疑惑我們可以在評論區一起討論。信自己,努力和汗水總會能得到回報的。我是大資料老哥,我們下期見~~~

獲取Flink面試題,Spark面試題,程式設計師必備軟體,hive面試題,Hadoop面試題,Docker面試題,簡歷模板等資源請去GitHub自行下載

來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/1806/viewspace-2826797/,如需轉載,請註明出處,否則將追究法律責任。

相關文章