MD5演算法詳解

micDavid發表於2021-06-28

前面一篇,帶大家對加密演算法進行了鳥瞰,本篇主要談md5演算法的實現。

MD5:Message-Digest Algorithm 5(資訊摘要5),確保資訊的完整性。其演算法是1992年公開的,那時我才幾歲,鑑於大家對md5都很熟悉,且程式中經常應用,我就不再介紹了。我簡單的介紹下設計者。其人是羅納德·李維斯特,美國密碼學家,後來發明了非對稱祕鑰RSA演算法,因這個演算法的在資訊保安中的突破與重要性而獲得了2002年的圖靈獎。

好了,接下來一起看演算法步驟以及原始碼:

1、填充

在MD5演算法中,首先需要對資訊進行填充,使其位長對512求餘的結果等於448,並且填充必須進行,使其位長對512求餘的結果等於448。因此,資訊的位長(Bits Length)將被擴充套件至N*512+448,N為一個非負整數,N可以是零。

理解:位長,就是位數。比如一個“wbq”,字串是三個位元組儲存,一個位元組8bit,所以位長就是24。

用數學語言可能更簡潔:設M為位長,當且僅當  M%512==448時,才可以處理。換另一種表示方式,M=N*512+448 ,N>=0

填充的方法如下:

1) 在資訊的後面填充一個1和無數個0,直到滿足上面的條件時才停止用0對資訊的填充。

2) 在這個結果後面附加一個以64位二進位制表示的填充前資訊長度(單位為Bit),如果二進製表示的填充前資訊長度超過64位,則取低64位。

經過這兩步的處理,M=N*512+448+64=(N+1)*512,即長度恰好是512的整數倍。這樣做的原因是為滿足後面處理中對資訊長度的要求。

經過兩步處理後,資訊變成了這樣,如下圖所示:

 

 

64位,8個位元組,用來表示原始資訊的位長。

 1         private static UInt32[] MD5_Append(byte[] input)
 2         {
 3             int zeros = 0;
 4             int ones = 1;
 5             int size = 0;
 6             int n = input.Length;
 7             int m = n % 64;
 8             if (m < 56)
 9             {
10                 zeros = 55 - m;
11                 size = n - m + 64;
12             }
13             else if (m == 56)
14             {
15                 zeros = 0;
16                 ones = 0;
17                 size = n + 8;
18             }
19             else
20             {
21                 zeros = 63 - m + 56;
22                 size = n + 64 - m + 64;
23             }
24 
25             ArrayList bs = new ArrayList(input);
26             if (ones == 1)
27             {
28                 bs.Add((byte)0x80); // 0x80 = $10000000
29             }
30             for (int i = 0; i < zeros; i++)
31             {
32                 bs.Add((byte)0);
33             }
34 
35             UInt64 N = (UInt64)n * 8;
36             byte h1 = (byte)(N & 0xFF);
37             byte h2 = (byte)((N >> 8) & 0xFF);
38 
39             byte h3 = (byte)((N >> 16) & 0xFF);
40             byte h4 = (byte)((N >> 24) & 0xFF);
41             byte h5 = (byte)((N >> 32) & 0xFF);
42             byte h6 = (byte)((N >> 40) & 0xFF);
43             byte h7 = (byte)((N >> 48) & 0xFF);
44             byte h8 = (byte)(N >> 56);
45             bs.Add(h1);
46             bs.Add(h2);
47             bs.Add(h3);
48             bs.Add(h4);
49             bs.Add(h5);
50             bs.Add(h6);
51             bs.Add(h7);
52             bs.Add(h8);
53             byte[] ts = (byte[])bs.ToArray(typeof(byte));
54 
55             /* Decodes input (byte[]) into output (UInt32[]). Assumes len is
56              * a multiple of 4.
57              */
58             UInt32[] output = new UInt32[size / 4];
59             for (Int64 i = 0, j = 0; i < size; j++, i += 4)
60             {
61                 output[j] = (UInt32)(ts[i] | ts[i + 1] << 8 | ts[i + 2] << 16 | ts[i + 3] << 24);
62             }
63             return output;
64         }

說明,補多少0,如何補?第7行,求餘。第10行,為什麼是55-m,而不是56-m?此時m<56,56-m表示,還需要補多少。因為需要補1個1,所以補0,就是56-m-1=55-m。那麼變更後的長度size如何計算?應該是新長度=原始長度+補1的長度+補0的長度+最後64位的長度,第11行  size = n - m + 64,推導如下:

size=n+1+55-m+8=n-m+64

注意:這裡的計算都是位元組數的計算

其餘兩個分支,可以以此類推。從35-44行,把原始資訊的位長轉為位元組,追加到陣列後面。58行以後,是把資訊劃分了4組。分組是UInt32,無符號32位,即4個位元組。61行的操作,就是把四個位元組轉為一個UInt32。

2、初始化變數

      private static void MD5_Init()
        {
            A = 0x67452301;  //in memory, this is 0x01234567
            B = 0xefcdab89;  //in memory, this is 0x89abcdef
            C = 0x98badcfe;  //in memory, this is 0xfedcba98
            D = 0x10325476;  //in memory, this is 0x76543210
        }

注意:這裡用的是小端模式,什麼是大端和小端模式?

舉一個例子,比如數字0x12 34 56 78在記憶體中的表示形式。

1)大端模式:Big-Endian就是高位位元組排放在記憶體的低地址端,低位位元組排放在記憶體的高地址端。(其實大端模式比較直觀)

低地址 --------------------> 高地址
0x12  |  0x34  |  0x56  |  0x78

2)小端模式:Little-Endian就是低位位元組排放在記憶體的低地址端,高位位元組排放在記憶體的高地址端。

低地址 --------------------> 高地址
0x78  |  0x56  |  0x34  |  0x12

3. 處理分組資料

        private static UInt32[] MD5_Trasform(UInt32[] x)
        {
            UInt32 a, b, c, d;

            for (int k = 0; k < x.Length; k += 16)
            {
                a = A;
                b = B;
                c = C;
                d = D;

                /* Round 1 */
                FF(ref a, b, c, d, x[k + 0], S11, 0xd76aa478); /* 1 */
                FF(ref d, a, b, c, x[k + 1], S12, 0xe8c7b756); /* 2 */
                FF(ref c, d, a, b, x[k + 2], S13, 0x242070db); /* 3 */
                FF(ref b, c, d, a, x[k + 3], S14, 0xc1bdceee); /* 4 */
                FF(ref a, b, c, d, x[k + 4], S11, 0xf57c0faf); /* 5 */
                FF(ref d, a, b, c, x[k + 5], S12, 0x4787c62a); /* 6 */
                FF(ref c, d, a, b, x[k + 6], S13, 0xa8304613); /* 7 */
                FF(ref b, c, d, a, x[k + 7], S14, 0xfd469501); /* 8 */
                FF(ref a, b, c, d, x[k + 8], S11, 0x698098d8); /* 9 */
                FF(ref d, a, b, c, x[k + 9], S12, 0x8b44f7af); /* 10 */
                FF(ref c, d, a, b, x[k + 10], S13, 0xffff5bb1); /* 11 */
                FF(ref b, c, d, a, x[k + 11], S14, 0x895cd7be); /* 12 */
                FF(ref a, b, c, d, x[k + 12], S11, 0x6b901122); /* 13 */
                FF(ref d, a, b, c, x[k + 13], S12, 0xfd987193); /* 14 */
                FF(ref c, d, a, b, x[k + 14], S13, 0xa679438e); /* 15 */
                FF(ref b, c, d, a, x[k + 15], S14, 0x49b40821); /* 16 */

                /* Round 2 */
                GG(ref a, b, c, d, x[k + 1], S21, 0xf61e2562); /* 17 */
                GG(ref d, a, b, c, x[k + 6], S22, 0xc040b340); /* 18 */
                GG(ref c, d, a, b, x[k + 11], S23, 0x265e5a51); /* 19 */
                GG(ref b, c, d, a, x[k + 0], S24, 0xe9b6c7aa); /* 20 */
                GG(ref a, b, c, d, x[k + 5], S21, 0xd62f105d); /* 21 */
                GG(ref d, a, b, c, x[k + 10], S22, 0x2441453); /* 22 */
                GG(ref c, d, a, b, x[k + 15], S23, 0xd8a1e681); /* 23 */
                GG(ref b, c, d, a, x[k + 4], S24, 0xe7d3fbc8); /* 24 */
                GG(ref a, b, c, d, x[k + 9], S21, 0x21e1cde6); /* 25 */
                GG(ref d, a, b, c, x[k + 14], S22, 0xc33707d6); /* 26 */
                GG(ref c, d, a, b, x[k + 3], S23, 0xf4d50d87); /* 27 */
                GG(ref b, c, d, a, x[k + 8], S24, 0x455a14ed); /* 28 */
                GG(ref a, b, c, d, x[k + 13], S21, 0xa9e3e905); /* 29 */
                GG(ref d, a, b, c, x[k + 2], S22, 0xfcefa3f8); /* 30 */
                GG(ref c, d, a, b, x[k + 7], S23, 0x676f02d9); /* 31 */
                GG(ref b, c, d, a, x[k + 12], S24, 0x8d2a4c8a); /* 32 */

                /* Round 3 */
                HH(ref a, b, c, d, x[k + 5], S31, 0xfffa3942); /* 33 */
                HH(ref d, a, b, c, x[k + 8], S32, 0x8771f681); /* 34 */
                HH(ref c, d, a, b, x[k + 11], S33, 0x6d9d6122); /* 35 */
                HH(ref b, c, d, a, x[k + 14], S34, 0xfde5380c); /* 36 */
                HH(ref a, b, c, d, x[k + 1], S31, 0xa4beea44); /* 37 */
                HH(ref d, a, b, c, x[k + 4], S32, 0x4bdecfa9); /* 38 */
                HH(ref c, d, a, b, x[k + 7], S33, 0xf6bb4b60); /* 39 */
                HH(ref b, c, d, a, x[k + 10], S34, 0xbebfbc70); /* 40 */
                HH(ref a, b, c, d, x[k + 13], S31, 0x289b7ec6); /* 41 */
                HH(ref d, a, b, c, x[k + 0], S32, 0xeaa127fa); /* 42 */
                HH(ref c, d, a, b, x[k + 3], S33, 0xd4ef3085); /* 43 */
                HH(ref b, c, d, a, x[k + 6], S34, 0x4881d05); /* 44 */
                HH(ref a, b, c, d, x[k + 9], S31, 0xd9d4d039); /* 45 */
                HH(ref d, a, b, c, x[k + 12], S32, 0xe6db99e5); /* 46 */
                HH(ref c, d, a, b, x[k + 15], S33, 0x1fa27cf8); /* 47 */
                HH(ref b, c, d, a, x[k + 2], S34, 0xc4ac5665); /* 48 */

                /* Round 4 */
                II(ref a, b, c, d, x[k + 0], S41, 0xf4292244); /* 49 */
                II(ref d, a, b, c, x[k + 7], S42, 0x432aff97); /* 50 */
                II(ref c, d, a, b, x[k + 14], S43, 0xab9423a7); /* 51 */
                II(ref b, c, d, a, x[k + 5], S44, 0xfc93a039); /* 52 */
                II(ref a, b, c, d, x[k + 12], S41, 0x655b59c3); /* 53 */
                II(ref d, a, b, c, x[k + 3], S42, 0x8f0ccc92); /* 54 */
                II(ref c, d, a, b, x[k + 10], S43, 0xffeff47d); /* 55 */
                II(ref b, c, d, a, x[k + 1], S44, 0x85845dd1); /* 56 */
                II(ref a, b, c, d, x[k + 8], S41, 0x6fa87e4f); /* 57 */
                II(ref d, a, b, c, x[k + 15], S42, 0xfe2ce6e0); /* 58 */
                II(ref c, d, a, b, x[k + 6], S43, 0xa3014314); /* 59 */
                II(ref b, c, d, a, x[k + 13], S44, 0x4e0811a1); /* 60 */
                II(ref a, b, c, d, x[k + 4], S41, 0xf7537e82); /* 61 */
                II(ref d, a, b, c, x[k + 11], S42, 0xbd3af235); /* 62 */
                II(ref c, d, a, b, x[k + 2], S43, 0x2ad7d2bb); /* 63 */
                II(ref b, c, d, a, x[k + 9], S44, 0xeb86d391); /* 64 */

                A += a;
                B += b;
                C += c;
                D += d;
            }
            return new UInt32[] { A, B, C, D };
        }

每一個分組經過64輪處理,FF、GG、HH、II為處理函式。從上面程式,可以看出,每16個數字為一組。以上是演算法的核心處理方法,下面是程式主方法:

        public static byte[] MD5Array(byte[] input)
        {
            MD5_Init();
            UInt32[] block = MD5_Append(input);
            UInt32[] bits = MD5_Trasform(block);

            /* Encodes bits (UInt32[]) into output (byte[]). Assumes len is
             * a multiple of 4.
                 */
            byte[] output = new byte[bits.Length * 4];
            for (int i = 0, j = 0; i < bits.Length; i++, j += 4)
            {
                output[j] = (byte)(bits[i] & 0xff);
                output[j + 1] = (byte)((bits[i] >> 8) & 0xff);
                output[j + 2] = (byte)((bits[i] >> 16) & 0xff);
                output[j + 3] = (byte)((bits[i] >> 24) & 0xff);
            }
            return output;
        }

把output連線起來,就是md5值,output傳入到下面方法:

      public static string ArrayToHexString(byte[] array, bool uppercase)
        {
            string hexString = "";
            string format = "x2";
            if (uppercase)
            {
                format = "X2";
            }
            foreach (byte b in array)
            {
                hexString += b.ToString(format);
            }
            return hexString;
        }

附錄:常量和基礎函式:

       //static state variables
        private static UInt32 A;
        private static UInt32 B;
        private static UInt32 C;
        private static UInt32 D;

        #region 常量

        //number of bits to rotate in tranforming
        private const int S11 = 7;
        private const int S12 = 12;
        private const int S13 = 17;
        private const int S14 = 22;
        private const int S21 = 5;
        private const int S22 = 9;
        private const int S23 = 14;
        private const int S24 = 20;
        private const int S31 = 4;
        private const int S32 = 11;
        private const int S33 = 16;
        private const int S34 = 23;
        private const int S41 = 6;
        private const int S42 = 10;
        private const int S43 = 15;
        private const int S44 = 21;

        #endregion

        #region 基礎函式

        /* F, G, H and I are basic MD5 functions.
         * 四個非線性函式:
         * 
         * F(X,Y,Z) =(X&Y)|((~X)&Z)
         * G(X,Y,Z) =(X&Z)|(Y&(~Z))
         * H(X,Y,Z) =X^Y^Z
         * I(X,Y,Z)=Y^(X|(~Z))
         * 
         * (&與,|或,~非,^異或)
         */
        private static uint F(UInt32 x, UInt32 y, UInt32 z)
        {
            return (x & y) | ((~x) & z);
        }
        private static uint G(UInt32 x, UInt32 y, UInt32 z)
        {
            return (x & z) | (y & (~z));
        }
        private static uint H(UInt32 x, UInt32 y, UInt32 z)
        {
            return x ^ y ^ z;   
        }
        private static uint I(UInt32 x, UInt32 y, UInt32 z)
        {
            return y ^ (x | (~z));
        }

        /* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
         * Rotation is separate from addition to prevent recomputation.
         */
        private static void FF(ref UInt32 a, UInt32 b, UInt32 c, UInt32 d, UInt32 mj, int s, UInt32 ti)
        {
            a = a + F(b, c, d) + mj + ti;
            a = a << s | a >> (32 - s);
            a += b;
        }
        private static void GG(ref UInt32 a, UInt32 b, UInt32 c, UInt32 d, UInt32 mj, int s, UInt32 ti)
        {
            a = a + G(b, c, d) + mj + ti;
            a = a << s | a >> (32 - s);
            a += b;
        }
        private static void HH(ref UInt32 a, UInt32 b, UInt32 c, UInt32 d, UInt32 mj, int s, UInt32 ti)
        {
            a = a + H(b, c, d) + mj + ti;
            a = a << s | a >> (32 - s);
            a += b;
        }
        private static void II(ref UInt32 a, UInt32 b, UInt32 c, UInt32 d, UInt32 mj, int s, UInt32 ti)
        {
            a = a + I(b, c, d) + mj + ti;
            a = a << s | a >> (32 - s);
            a += b;
        }

        #endregion

 

關於函式的具體說明,可參考網上的說明。

小結:關於MD5的演算法,還算是比較簡單的演算法,相比其它的加密演算法而言。每一個演算法都值得去推敲和學習。

 

相關文章