Eigen教程(3)之矩陣和向量的運算
轉載於:https://www.cnblogs.com/houkai/p/6348044.html
矩陣和向量的運算
提供一些概述和細節:關於矩陣、向量以及標量的運算。
介紹
Eigen提供了matrix/vector的運算操作,既包括過載了c++的算術運算子+/-/*,也引入了一些特殊的運算比如點乘dot、叉乘cross等。
對於Matrix類(matrix和vectors)這些操作只支援線性代數運算,比如:matrix1*matrix2表示矩陣的乘機,vetor+scalar是不允許的。如果你想執行非線性代數操作,請看下一篇(暫時放下)。
加減
左右兩側變數具有相同的尺寸(行和列),並且元素型別相同(Eigen不自動轉化型別)操作包括:
- 二元運算 + 如a+b
- 二元運算 - 如a-b
- 一元運算 - 如-a
- 複合運算 += 如a+=b
- 複合運算 -= 如a-=b
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
Matrix2d a;
a << 1, 2,
3, 4;
MatrixXd b(2,2);
b << 2, 3,
1, 4;
std::cout << "a + b =\n" << a + b << std::endl;
std::cout << "a - b =\n" << a - b << std::endl;
std::cout << "Doing a += b;" << std::endl;
a += b;
std::cout << "Now a =\n" << a << std::endl;
Vector3d v(1,2,3);
Vector3d w(1,0,0);
std::cout << "-v + w - v =\n" << -v + w - v << std::endl;
}
輸出:
a + b =
3 5
4 8
a - b =
-1 -1
2 0
Doing a += b;
Now a =
3 5
4 8
-v + w - v =
-1
-4
-6
標量乘法和除法
乘/除標量是非常簡單的,如下:
- 二元運算 * 如matrix*scalar
- 二元運算 * 如scalar*matrix
- 二元運算 / 如matrix/scalar
- 複合運算 *= 如matrix*=scalar
- 複合運算 /= 如matrix/=scalar
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
Matrix2d a;
a << 1, 2,
3, 4;
Vector3d v(1,2,3);
std::cout << "a * 2.5 =\n" << a * 2.5 << std::endl;
std::cout << "0.1 * v =\n" << 0.1 * v << std::endl;
std::cout << "Doing v *= 2;" << std::endl;
v *= 2;
std::cout << "Now v =\n" << v << std::endl;
}
結果
a * 2.5 =
2.5 5
7.5 10
0.1 * v =
0.1
0.2
0.3
Doing v *= 2;
Now v =
2
4
6
表示式模板
這裡簡單介紹,在高階主題中會詳細解釋。在Eigen中,線性運算比如+不會對變數自身做任何操作,會返回一個“表示式物件”來描述被執行的計算。當整個表示式被評估完(一般是遇到=號),實際的操作才執行。
這樣做主要是為了優化,比如
VectorXf a(50), b(50), c(50), d(50);
...
a = 3*b + 4*c + 5*d;
Eigen會編譯這段程式碼最終遍歷一次即可運算完成。
for(int i = 0; i < 50; ++i)
a[i] = 3*b[i] + 4*c[i] + 5*d[i];
因此,我們不必要擔心大的線性表示式的運算效率。
轉置和共軛
表示transpose轉置
表示conjugate共軛
表示adjoint(共軛轉置) 伴隨矩陣
MatrixXcf a = MatrixXcf::Random(2,2);
cout << "Here is the matrix a\n" << a << endl;
cout << "Here is the matrix a^T\n" << a.transpose() << endl;
cout << "Here is the conjugate of a\n" << a.conjugate() << endl;
cout << "Here is the matrix a^*\n" << a.adjoint() << endl;
輸出
Here is the matrix a
(-0.211,0.68) (-0.605,0.823)
(0.597,0.566) (0.536,-0.33)
Here is the matrix a^T
(-0.211,0.68) (0.597,0.566)
(-0.605,0.823) (0.536,-0.33)
Here is the conjugate of a
(-0.211,-0.68) (-0.605,-0.823)
(0.597,-0.566) (0.536,0.33)
Here is the matrix a^*
(-0.211,-0.68) (0.597,-0.566)
(-0.605,-0.823) (0.536,0.33)
對於實數矩陣,conjugate不執行任何操作,adjoint等價於transpose。
transpose和adjoint會簡單的返回一個代理物件並不對本省做轉置。如果執行 b=a.transpose()
,a不變,轉置結果被賦值給b。如果執行 a=a.transpose()
Eigen在轉置結束之前結果會開始寫入a,所以a的最終結果不一定等於a的轉置。
Matrix2i a; a << 1, 2, 3, 4;
cout << "Here is the matrix a:\n" << a << endl;
a = a.transpose(); // !!! do NOT do this !!!
cout << "and the result of the aliasing effect:\n" << a << endl;
Here is the matrix a:
1 2
3 4
and the result of the aliasing effect:
1 2
2 4
這被稱為“別名問題”。在debug模式,當assertions開啟的情況加,這種常見陷阱可以被自動檢測到。
對 a=a.transpose()
這種操作,可以執行in-palce轉置。類似還有adjointInPlace。
MatrixXf a(2,3); a << 1, 2, 3, 4, 5, 6;
cout << "Here is the initial matrix a:\n" << a << endl;
a.transposeInPlace();
cout << "and after being transposed:\n" << a << endl;
Here is the initial matrix a:
1 2 3
4 5 6
and after being transposed:
1 4
2 5
3 6
矩陣-矩陣的乘法和矩陣-向量的乘法
向量也是一種矩陣,實質都是矩陣-矩陣的乘法。
- 二元運算 *如a*b
- 複合運算 *=如a*=b
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
Matrix2d mat;
mat << 1, 2,
3, 4;
Vector2d u(-1,1), v(2,0);
std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;
std::cout << "Here is mat*u:\n" << mat*u << std::endl;
std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl;
std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl;
std::cout << "Here is u*v^T:\n" << u*v.transpose() << std::endl;
std::cout << "Let's multiply mat by itself" << std::endl;
mat = mat*mat;
std::cout << "Now mat is mat:\n" << mat << std::endl;
}
輸出
Here is mat*mat:
7 10
15 22
Here is mat*u:
1
1
Here is u^T*mat:
2 2
Here is u^T*v:
-2
Here is u*v^T:
-2 -0
2 0
Let's multiply mat by itself
Now mat is mat:
7 10
15 22
m=m*m
並不會導致別名問題,Eigen在這裡做了特殊處理,引入了臨時變數。實質將編譯為:
tmp = m*m
m = tmp
如果你確定矩陣乘法是安全的(並沒有別名問題),你可以使用noalias()函式來避免臨時變數 c.noalias() += a*b
。
點運算和叉運算
dot()執行點積,cross()執行叉積,點運算得到1*1的矩陣。當然,點運算也可以用u.adjoint()*v來代替。
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
Vector3d v(1,2,3);
Vector3d w(0,1,2);
cout << "Dot product: " << v.dot(w) << endl;
double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar
cout << "Dot product via a matrix product: " << dp << endl;
cout << "Cross product:\n" << v.cross(w) << endl;
}
輸出
Dot product: 8
Dot product via a matrix product: 8
Cross product:
1
-2
1
注意:點積只對三維vector有效。對於複數,Eigen的點積是第一個變數共軛和第二個變數的線性積。
基礎的歸約操作
Eigen提供了而一些歸約函式:sum()、prod()、maxCoeff()和minCoeff(),他們對所有元素進行操作。
#include <iostream>
#include <Eigen/Dense>
using namespace std;
int main()
{
Eigen::Matrix2d mat;
mat << 1, 2,
3, 4;
cout << "Here is mat.sum(): " << mat.sum() << endl;
cout << "Here is mat.prod(): " << mat.prod() << endl;
cout << "Here is mat.mean(): " << mat.mean() << endl;
cout << "Here is mat.minCoeff(): " << mat.minCoeff() << endl;
cout << "Here is mat.maxCoeff(): " << mat.maxCoeff() << endl;
cout << "Here is mat.trace(): " << mat.trace() << endl;
}
輸出
Here is mat.sum(): 10
Here is mat.prod(): 24
Here is mat.mean(): 2.5
Here is mat.minCoeff(): 1
Here is mat.maxCoeff(): 4
Here is mat.trace(): 5
trace表示矩陣的跡,對角元素的和等價於 a.diagonal().sum()
。
minCoeff和maxCoeff函式也可以返回結果元素的位置資訊。
Matrix3f m = Matrix3f::Random();
std::ptrdiff_t i, j;
float minOfM = m.minCoeff(&i,&j);
cout << "Here is the matrix m:\n" << m << endl;
cout << "Its minimum coefficient (" << minOfM
<< ") is at position (" << i << "," << j << ")\n\n";
RowVector4i v = RowVector4i::Random();
int maxOfV = v.maxCoeff(&i);
cout << "Here is the vector v: " << v << endl;
cout << "Its maximum coefficient (" << maxOfV
<< ") is at position " << i << endl;
輸出
Here is the matrix m:
0.68 0.597 -0.33
-0.211 0.823 0.536
0.566 -0.605 -0.444
Its minimum coefficient (-0.605) is at position (2,1)
Here is the vector v: 1 0 3 -3
Its maximum coefficient (3) is at position 2
操作的有效性
Eigen會檢測執行操作的有效性,在編譯階段Eigen會檢測它們,錯誤資訊是繁冗的,但錯誤資訊會大寫字母突出,比如:
Matrix3f m;
Vector4f v;
v = m*v; // Compile-time error: YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES
當然動態尺寸的錯誤要在執行時發現,如果在debug模式,assertions會觸發後,程式將崩潰。
MatrixXf m(3,3);
VectorXf v(4);
v = m * v; // Run-time assertion failure here: "invalid matrix product"
相關文章
- MATLAB(6)矩陣和向量運算Matlab矩陣
- 3D數學基礎-向量運算基礎和矩陣變換3D矩陣
- Eigen:矩陣計算簡單用法(一)矩陣
- Eigen:矩陣計算簡單用法(二)矩陣
- 向量化實現矩陣運算最佳化(一)矩陣
- c語言中實現4行3列矩陣和3行4列矩陣的運算C語言矩陣
- Julia的矩陣運算矩陣
- OpenCV矩陣運算OpenCV矩陣
- 矩陣的特徵值和特徵向量矩陣特徵
- Numpy中的矩陣運算矩陣
- 向量和矩陣的座標變換7矩陣
- 機器學習中的矩陣向量求導(五) 矩陣對矩陣的求導機器學習矩陣求導
- 矩陣乘法的運算量計算(華為OJ)矩陣
- 向量和矩陣求導公式總結矩陣求導公式
- 卷積運算元的矩陣向量乘積表示&一維離散降質模型卷積矩陣模型
- 矩陣的乘法運算與css的3d變換(transform)矩陣CSS3DORM
- 機器學習中的矩陣向量求導(四) 矩陣向量求導鏈式法則機器學習矩陣求導
- 寫給 Web 開發者的深度學習教程 - 向量化 & 矩陣Web深度學習矩陣
- spark向量、矩陣型別Spark矩陣型別
- 基向量 變換矩陣矩陣
- 2.12 求下列矩陣的特徵值和特徵向量的數值解和符號解 (-1 1 0 -4 3 0 1 0 2)的3*3矩陣矩陣特徵符號
- pytorch基礎七(矩陣運算)PyTorch矩陣
- 矩陣運算與相抵標準型矩陣
- CUDA版本稀疏矩陣向量乘矩陣
- OpenMP 版本稀疏矩陣向量乘矩陣
- 矩陣旋轉-Eigen應用(QTCreator編輯器)矩陣QT
- Matlab矩陣運算的硬體資源分析Matlab矩陣
- 向量和矩陣的座標變換(下標記法)7矩陣
- 矩陣計算矩陣
- verilog實現矩陣卷積運算矩陣卷積
- 計算矩陣的秩矩陣
- 3D圖形:矩陣的行列式,矩陣的逆、正交矩陣、齊次矩陣3D矩陣
- torch中向量、矩陣乘法大總結矩陣
- Spark MLlib 核心基礎:向量 And 矩陣Spark矩陣
- 基礎入門:深度學習矩陣運算的概念和程式碼實現深度學習矩陣
- VIVADO vhdl verilog 實現矩陣運算矩陣
- MKL稀疏矩陣運算示例及函式封裝矩陣函式封裝
- Bert結構手動矩陣運算實現(Transform)矩陣ORM